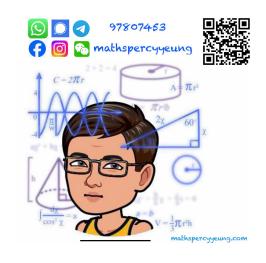

2021-2022 S6 1st TERM UT-MATH-CP 1


MATHEMATICS Compulsory Part PAPER 1

Question-Answer Book

8th November, 2021 8:15 am – 9:45 am (1 hour 30 minutes) **This paper must be answered in English**

INSTRUCTIONS

- 1. Write your name, class and class number in the spaces provided on this cover.
- 2. This paper consists of THREE sections, A(1), A(2) and B.
- 3. Attempt ALL questions in this paper. Write your answers in the spaces provided in this Question Answer Book. Do not write in the margins. Answers written in the margins will not be marked.
- 4. Unless otherwise specified, all working must be clearly shown.
- 5. Unless otherwise specified, numerical answers should be either exact or correct to 3 significant figures.
- 6. The diagrams in this paper are not necessarily drawn to scale.

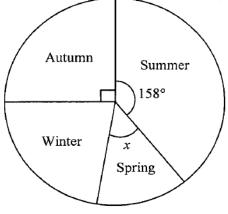
Sections	Marks
A (1 – 4)	
A (5 – 9)	
A Total	/41
B Total	/29
TOTAL	/70

1.	Simplify	$\frac{(x^{-}y)^{2}}{x^{8}y^{-2}}$	and express y	your answer with positi	ive indices.	(3 marks
				3 2 <i>b</i> –1		
2.	Make b th	ne subject	t of the formula	$a \frac{3}{2} = \frac{2b-1}{a+b} .$		(3 marks

•		•
	Loot	orize
7	Facil	ハロフヒ

- (a) $16a^2 49$,
- **(b)** $16a^2 49 4ab 7b$.

(3 marks)

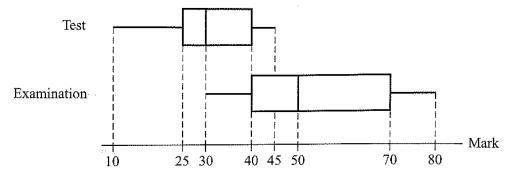

Answers written in the margins will not be marked

(4 marks)

4. The pie chart below shows the distribution of the seasons of birth of the students in a school. If a student is randomly selected from the school, then the probability that the selected student

was born in spring is $\frac{1}{9}$.

Distribution of the seasons of birth of the students in the school

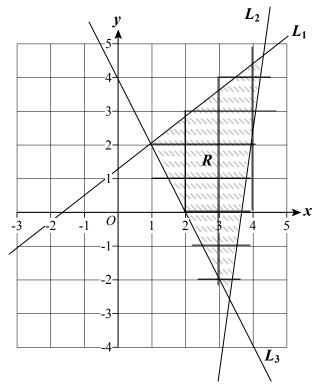

- (a) Find x.
- **(b)** In the school, there are 180 students born in winter. Find the number of students in the school.

(a)	How many integers of	atisfy both inequalities in (a)?	
(0)	, 110 11 11101111 111102013 30	and the modulation in (a):	(4 ma
			(1114
•••••			
ref <i>B</i> '.	lection of A with respec	ints A and B are $(4, -2)$ and $(-6, 8)$ re to the y -axis. B is rotated clockwise a	
ref <i>B'</i> . (a)	Plection of A with respective Write down the coordinates	t to the y -axis. B is rotated clockwise a linates of A' and B' .	
ref <i>B</i> '.	Plection of A with respective Write down the coordinates	t to the <i>y</i> -axis. <i>B</i> is rotated clockwise a	bout the origin through 9
ref <i>B'</i> . (a)	Plection of A with respective Write down the coordinates	t to the y -axis. B is rotated clockwise a linates of A' and B' .	bout the origin through 90
ref <i>B'</i> . (a)	Plection of A with respective Write down the coordinates	t to the y -axis. B is rotated clockwise a linates of A' and B' .	bout the origin through 90
ref <i>B'</i> . (a)	Plection of A with respective Write down the coordinates	t to the y -axis. B is rotated clockwise a linates of A' and B' .	bout the origin through 90
ref <i>B'</i> . (a)	Plection of A with respective Write down the coordinates	t to the y -axis. B is rotated clockwise a linates of A' and B' .	bout the origin through 90
ref <i>B'</i> . (a)	Plection of A with respective Write down the coordinates	t to the y -axis. B is rotated clockwise a linates of A' and B' .	bout the origin through 90
ref <i>B'</i> . (a)	Plection of A with respective Write down the coordinates	t to the y -axis. B is rotated clockwise a linates of A' and B' .	bout the origin through 90
ref <i>B'</i> . (a)	Plection of A with respective Write down the coordinates	t to the y -axis. B is rotated clockwise a linates of A' and B' .	bout the origin through 90
ref <i>B'</i> . (a)	Plection of A with respective Write down the coordinates	t to the y -axis. B is rotated clockwise a linates of A' and B' .	bout the origin through 90
ref <i>B'</i> . (a)	Plection of A with respective Write down the coordinates	t to the y -axis. B is rotated clockwise a linates of A' and B' .	
ref <i>B'</i> . (a)	Plection of A with respective Write down the coordinates	t to the y -axis. B is rotated clockwise a linates of A' and B' .	bout the origin through 90
ref <i>B'</i> . (a)	Plection of A with respective Write down the coordinates	t to the y -axis. B is rotated clockwise a linates of A' and B' .	bout the origin through 90
ref <i>B'</i> . (a)	Plection of A with respective Write down the coordinates	t to the y -axis. B is rotated clockwise a linates of A' and B' .	bout the origin through 90
ref <i>B'</i> . (a)	Plection of A with respective Write down the coordinates	t to the y -axis. B is rotated clockwise a linates of A' and B' .	bout the origin through 90
ref <i>B'</i> . (a)	Plection of A with respective Write down the coordinates	t to the y -axis. B is rotated clockwise a linates of A' and B' .	bout the origin through 90
ref <i>B'</i> . (a)	Plection of A with respective Write down the coordinates	t to the y -axis. B is rotated clockwise a linates of A' and B' .	bout the origin through 90

	The Mathematics club is going to publish a magazine. It is estimated that the cost (C) of printing a magazine is partly constant and partly varies inversely as the total number of copie printed (n). When $n = 200$, $C = 12$; when $n = 400$, $C = 10$.					
pr						
`	 (a) Express C in terms of n. (b) The school subsidizes \$2 000 for the publishing fee and 1000 copies are print a price of \$10 each. If only 700 copies are sold, will the Mathematics club subsequence Explain your answer. 					

(a)	Find the coordinates of G .	oot EE AD	and EE // AB Find	(5 ma
(D)	E and F are two points on C such the	$\mathbf{R} \mathbf{E} \mathbf{F} = \mathbf{A} \mathbf{B}$	and EF // AB. Find	(3 ma

9. The box-and-whisker diagrams below show the distributions of the test marks and the examination marks of a class of 41 students.



The full marks for the test and the examination are 50 and 100 respectively. The passing marks for the test and the examination are 25 and 50 respectively.

- (a) Do more students pass the test than the examination? Explain your answer. (2 marks)
- **(b)** Tony gets 30 marks in the test and 55 marks in the examination. Does Tony perform relatively better in the test? Explain your answer (2 marks)
- (c) Mary gets 50 marks in the examination. She claims that there must be at least 20 students with marks less than her. Do you agree? Explain your answer. (2 marks)

the	26 capital letters and 10 numeral digits 0, 1, 2,, 9.				
	How many different 10-character user names can be formed?	(2 marks			
(b)	If the last 3 characters of the user name must be numeral digits, how many diff				
	names can be formed?	(2 marks			
•••••					
•••••					

11. In the figure, the equations of L_1 and L_2 are 4x-5y+6=0 and 9x-y-32=0 respectively. R is the region (including the boundary) bounded by L_1 , L_2 and L_3 .

(a) If R represents the solutions of a system of inequalities, find the system of inequalities.

(3 marks)

Answers written in the margins will not be marked

(b) Let x and y be integers such that (x, y) lies in R. Someone claims that the maximum value of the function F = 2x - y + 2 is 10. Do you agree? Explain your answer. (2 marks)

12.	use all to nth in The form	the space in a better way, all the luxury seats are arranged in the even numbers' rows and he normal seats are arranged in the odd numbers' row. The first row has 18 seats. For the row, when n is an odd number, the $(n + 2)$ th row is formed by adding 3 seats to the n th row, second row has 8 seats. For the n th row, when n is an even number, the $(n + 2)$ th row is need by adding 2 seats to the n th row. It is given that the last row in the theater is arranged uxury seats.	nged in the even numbers' rows and . The first row has 18 seats. For the med by adding 3 seats to the n th row. In even number, the $(n + 2)$ th row is		
	(a)	Find, in terms of n , the total number of seats in this new theatre. (2 marks)			
	(b)	Someone claims that the total number of seats in this theatre can be from 1050 to 1100.			
		Do you agree? Explain your answer. (3marks)			

13.	A bank offers a mortgage plan of up to a loan amount of 90% of the purchase price of a flat. The interest rate is fixed at 6% p.a. compounded monthly and the repayment period is up to 25 years. David is going to apply the mortgage plan for a newly bought apartment of \$ 4 000 000. The bank offers a loan amount of 70% of the purchase price and David plans to repay \$20 000 each month. Let $$A_n$$ be the loan amount at the end of the n th month.				
	(a) (b)	Find A_1 and A_2 . Prove that $A_n = 400000 [10 - 3(1.005)^n]$	(4 marks) (3 marks)		
	(c)	David decides to repay all the loan in 15 years. Find the minimum amountably repayment, correct to the nearest dollar.	int of each (3 marks)		

•••	
_	
•••	

14.	Con	asider the function $f(x) = x^3 - 2x^2 - 3x + 4$.	
	(a)		with respect to
		the y-axis, find $g(x)$.	(1 mark)
	(b)	If the graph of $y = h(x)$ is obtained by translating the graph of $y = g(x)$ t	o the left by
		1 unit, find $h(x)$.	(1 mark)
	(c)	John claims that the graph of $y = h(x)$ can be obtained by the following tra	
		Translating the graph of $y = f(x)$ to the left by 1 unit and the	en
		reflecting the resulting graph with respect to the y-axis.	
		Do you agree? Explain your answer.	
			(3 marks)
		END OF PAPER	