2021-2022-S5 2nd TERM EXAM-MATH-CP 2

2021 – 2022 S5 Second Term Examination

MATHEMATICS Compulsory Part

PAPER 2

24th June, 2022 11:00 am – 12:15 pm (1 hour 15 minutes) Total Marks: 45

INSTRUCTIONS

- 1. Read carefully the instructions on the Answer Sheet. After the announcement of the start of the examination, you should insert the information required in the spaces provided.
- 2. When told to open this book, you should check that all the questions are there. Look for the words 'END OF PAPER' after the last question.
- 3. All questions carry equal marks.
- 4. **ANSWER ALL QUESTIONS**. You should use an HB pencil to mark all your answers on the Answer Sheet, so that wrong marks can be completely erased with a clean rubber. You must mark the answers clearly; otherwise you will lose marks if the answers cannot be captured.
- 5. You should mark only **ONE** answer for each question. If you mark more than one answer, you will receive **NO MARKS** for that question.
- 6. No marks will be deducted for wrong answers.

There are 30 questions in Section A and 15 questions in Section B. The diagrams in this paper are not necessarily drawn to scale. Choose the best answer for each question.

Section A

1.
$$\left(\frac{8^{n+1}}{2^{2n}}\right)^2 =$$

A. 2^{2n+2} .

- B. 2^{2n+6} .
- C. 2^{10n+2} .
- D. 2^{10n+6} .

2.
$$(a-1)(a+1)(a+b) =$$

A. $a^3 + a^2b - a - b$.
B. $a^3 + a^2b + a - b$.
C. $a^3 - a^2b - a - b$.
D. $a^3 - a^2b + a - b$.

3.
$$\frac{1}{3^3} + \frac{1}{2^7} =$$

- A. 0.044 (corr. to 2 significant figures).
- B. 0.044 8 (corr. to 3 decimal places).
- C. 0.044 84 (corr. to 4 significant figures).
- D. 0.044 85 (corr. to 5 decimal places).

4. Let
$$f(x) = 4x^3 - 10x^2 - kx + 5$$
, where k is
a constant. If $f(-1) = -14$, then $k =$
A. -13.
B. -5.

- C. 13.
- D. 25.

5. If
$$3(a-b) = a(a+b)$$
, then $b =$
A. $\frac{a^2 + 3a}{a-3}$.
B. $\frac{a^2 + 3a}{3-a}$.
C. $\frac{a^2 - 3a}{a+3}$.
D. $\frac{3a-a^2}{a+3}$.

6.
$$\frac{6}{k-6} - \frac{7}{k-7} =$$

A.
$$\frac{k}{(k-6)(7-k)}$$
.
B.
$$\frac{k}{(k-6)(k-7)}$$
.
C.
$$\frac{k+84}{(k-6)(7-k)}$$
.
D.
$$\frac{k+84}{(k-6)(k-7)}$$
.

- 7. Let $f(x) = 4x^3 + kx + 3$, where k is a constant. If f(x) is divisible by 2x+1, find the remainder when f(x) is divided by x+1.
 - A. -7
 B. -6
 C. 0
 D. 5

- 8. Find the range of values of k such that the quadratic equation $x^2 8x + 1 = k$ has two distinct real roots.
 - A. k > -15
 - B. *k* < −15
 - C. *k* > 17
 - D. *k* < 17
- 9. In the figure, y = f(x) is the graph of a quadratic function. f(x) =

- A. (x-1)(x-5).
- B. -(x+1)(x+5).
- C. -2(x-1)(x-5).
- D. -2(x+1)(x+5).
- 10. Solve the compound inequality 7-3x < 1 or 2x+1 > 9.
 - A. No solutions
 - B. x > 2
 - C. x > 4
 - D. 2 < x < 4

- A sum of \$6 200 is deposited at an interest rate of 2% per annum for 3 years, compounded monthly. Find the interest correct to the nearest dollar.
 - A. \$372
 - B. \$378
 - C. \$379
 - D. \$383
- 12. The scale of a map is 1:400 000. If the area of a national park on the map is 36 cm², then the actual area of the national park is
 - A. 144 km².
 - B. 576 km^2 .
 - C. $1\,440\,km^2$.
 - D. 57600 km^2 .
- 13. If an electric fan is sold at a discount of 12% on its marked price, then the discount is \$27 and the percentage loss is 10%. Find the cost of the electric fan.
 - A. \$220
 - B. \$226.8
 - C. \$250
 - D. \$280
- 14. It is given that r varies directly as the square of p and inversely as q. If r is increased by 80% and q is decreased by 20%, then p
 - A. is increased by 20%.
 - B. is increased by 44%.
 - C. is decreased by 40%.
 - D. is decreased by 60%.

15. In the figure, D, E and F are points lying on AB, AC and BC respectively such that AF cuts DE perpendicularly at G.

If $\angle BAF = \angle CAF = \angle AED = \angle FED$,

which of the following must be true?

- I. $\Delta ADG \cong \Delta EFG$
- II. $\triangle ADG$ is an isosceles triangle.
- III. $\angle BAC = 90^{\circ}$
- A. I and II only
- B. I and III only
- C. II and III only
- D. I, II and III
- Convert the polar coordinates (10, 240°) into rectangular coordinates.
 - A. $(-5, -5\sqrt{3})$
 - B. $(5, 5\sqrt{3})$
 - C. $(-5\sqrt{3}, -5)$
 - D. $(5\sqrt{3},5)$

17.
$$\sin(\theta - 270^{\circ}) + \frac{2\sin(180^{\circ} + \theta)}{\tan(-\theta)} =$$

A. $-\cos\theta$.
B. $3\cos\theta$.
C. $\sin\theta - 2\cos\theta$.

D. $2\cos\theta - \sin\theta$.

18. It is given that a moving point P is equidistant from (1,2) and (7,4), find the equation of the locus of P.

A.
$$3x + y + 15 = 0$$

B. $x + 3y - 13 = 0$

- $C. \quad 3x + y 15 = 0$
- $D. \quad x y + 6 = 0$
- 19. Which of the following statement(s) about a regular 10-sided polygon is / are true?
 - I. The number of axes of reflectional symmetry is 5.
 - II. Each exterior angle is 36°.
 - III. Each interior angle is 144°.
 - A. II only
 - B. I and III only
 - C. II and III only
 - D. I, II and III
- 20. In the figure, the solid consists of two identical right circular cones. The height and the circumference of the base of one circular cone are 4 cm and 6π cm respectively. Find the total surface area of the solid.
 - A. $18\pi \text{ cm}^2$
 - B. 24π cm²
 - C. $30\pi \text{ cm}^2$
 - D. $48\pi \text{ cm}^2$

21. In the figure, *OPQ* is a sector of radius 10 cm. *R* is a point lying on *OP* such that *QR* is perpendicular to *OP*. If *PR* = 2 cm, find the area of the shaded region *PQR* correct to the nearest 0.1 cm².

- A. 8.2 cm^2
- B. 15.8 cm^2
- C. 22.3 cm^2
- D. 32.2 cm^2
- 22. In the figure, *B* is a point lying on *AC* such that AB : BC = 2 : 3. *G* and *E* are points lying on *AD*. *BG* produced and *CE* produced meet at *F* such that *FE* : *CE* = 1 : 2. It is given that *BF* // *CD*. If the area of $\triangle CDE$ is 20 cm², then the area of the quadrilateral *BCEG* is

23. In the figure, the equations of the straight lines L_1 and L_2 are ax+by=1 and cx+3y=1 respectively.

Which of the following are true?

- I. a < 0II. 0 < b < 3III. c > 0
- A. I and II only
- B. I and III only
- C. II and III only
- D. I, II and III
- 24. A circle *C* lies in the fourth quadrant. Which of the following can be the equation of *C*?

A.
$$x^{2} + y^{2} - 6x + 4y + 4 = 0$$

B. $x^{2} + y^{2} - 4x + 8y + 11 = 0$

- C. $x^2 + y^2 12x 14y + 21 = 0$
- D. $x^2 + y^2 10x + 10y + 34 = 0$

25. In the figure, A, B, C and Q are points lying on the circle. It is given that $\widehat{AQ} = \widehat{QC}$, $\angle BAC = 54^{\circ}$ and $\angle BCQ = 100^{\circ}$. Find $\angle ABC$.

- A. 50°
- B. 52°
- C. 54°
- D. 56°
- 26. In the figure, *BE* is a diameter of the circle *ABCDE*. If $\angle BAD = 75^{\circ}$, then $\angle ECD =$

27. In the figure, *ABCD* is a rectangle. AB = p, BC = q and $\angle BAY = \theta$. Find the distance of *C* from the straight line *XAY*.

- A. $p \sin \theta + q \cos \theta$ B. $p \cos \theta + q \sin \theta$ C. $\sqrt{p^2 + q^2} \sin \theta$ D. $(p+q) \sin \theta$
- 28. Two cards are randomly drawn one by one with replacement from seven cards numbered 1, 2, 3, 4, 5, 6 and 7 respectively. Find the probability that the product of the two numbers on the cards drawn is an even number.

A.
$$\frac{1}{7}$$

B. $\frac{9}{49}$
C. $\frac{33}{49}$
D. $\frac{5}{7}$

2021-2022-S5 2nd TERM EXAM-MATH-CP 2-7

29. The bar chart shows the distribution of the scores obtained by a group of students in a test.

Which of the following is true?

- A. The mode of the distribution is 20.
- B. The median of the distribution is 32.5.
- C. The lower quartile of the distribution is 20.
- D. The upper quartile of the distribution is 40.
- 30. The box-and-whisker diagram below shows the distribution of the heights (in cm) of students in a class.

If the inter-quartile range of the heights of the students is 24 cm, find x.

- A. 146
- B. 148
- C. 150
- D. 152

Section **B**

31. The L.C.M. of $3a^4b^2c$, $4ab^5c$ and $6a^2b^3$ is A. ab^2 . B. ab^2c . C. $12a^4b^5c$. D. $12a^7b^9c$.

32. If
$$a \neq b$$
 and $\begin{cases} 2a - a^2 = 5\\ 2b - b^2 = 5 \end{cases}$, then
 $a^2 + b^2 =$
A. -6.
B. 2.
C. 4.
D. 25.

33. Let k be a real number. The imaginary part of $\left(\frac{k}{3-i}\right)^2$ is A. $\frac{k}{10}$. B. $\frac{k^2}{100}$. C. $\frac{3k^2}{50}$.

 $\frac{2k^2}{25}$

D.

- 34. $11 \times 16^{11} + 12 \times 16^7 + 515 =$
 - A. A000B000020₁₆.
 - B. B000C000023₁₆.
 - C. A000B0000201₁₆.
 - D. $B000C0000203_{16}$.
- 35. The graph in the figure shows the linear relation between $\log_7 x$ and $\log_7 y$. If $y = a x^b$, then

- A. $a = \frac{1}{7}$ and $b = -\frac{1}{2}$. B. $a = -\frac{1}{7}$ and $b = -\frac{1}{2}$. C. $a = \frac{1}{7}$ and $b = \frac{1}{2}$.
- D. a = 7 and b = 2.

36. For $0^{\circ} \le x < 360^{\circ}$, how many roots does the equation $6\cos^2 x - 13\cos x = -6$ have?

- A. 0
- B. 1
- C. 2
- D. 4

37. The figure shows a shaded region (including the boundary).

If (p, q) is a point lying in the shaded region, which of the following are true?

I. $0 \le q \le 5$

II.
$$q \le 25 - 5p$$

III.
$$q \leq \frac{p}{2} + 3$$

- A. I and II only
- B. I and III only
- C. II and III only
- D. I, II and III
- 38. In the figure, the perimeter of $\triangle ABC$ is 50 cm. The area of $\triangle ABC =$

39. It is given that k is a non-zero constant. The straight line 6x - 3y = k cuts the *x*-axis and the *y*-axis at the points *A* and *B* respectively. Let *C* be a point lying on the *x*-axis such that the centroid of $\triangle ABC$ lies on the y-axis. Find the x-coordinate of Cin terms of k.

A.
$$-\frac{k}{3}$$

B. $-\frac{k}{6}$
C. $-\frac{k}{9}$
D. $-\frac{k}{12}$

40. In the figure, ABCD is a square with diagonal $BD = 5\sqrt{2}$ cm. If E is a point lying on *BD* such that $\angle AED = 60^\circ$, then AE =

A.
$$\frac{2\sqrt{3}}{5}$$
 cm.
B. $\frac{5\sqrt{3}}{2}$ cm.
C. $\frac{3\sqrt{6}}{5}$ cm.
D. $\frac{5\sqrt{6}}{2}$ cm.

3

In the figure, *ABC* is the common tangent 41. to the circles BDE and BFG at B. DBF and EBG are straight lines. Which of the following must be true?

- I. $\angle ABE = \angle BFG$
- II. DE // GF
- III. D, E, F and G are concyclic.
- A. I and II only
- I and III only B.
- C. II and III only
- D. I, II and III

42. In the figure, the true bearing of Q from P is 060° and that of R from Q is 135°. If PQ = 15 km and QR = 20 km, find the distance between P and R correct to nearest km.

- A. 7 km
- B. 25 km
- C. 28 km
- D. 32 km
- 43. Peter, John and 8 other students are arranged to stand in a row. Find the number of possible arrangements such that Peter does not stand at the front and he stands together with John.
 - A. 40 320
 - B. 362 880
 - C. 685 440
 - D. 725 760

44. Bag A contains 4 black balls and 2 white balls while bag B contains 3 black balls and 1 white ball. A ball is randomly drawn from bag A and put into bag B. If a ball is now randomly drawn from bag B, find the probability that the ball drawn is black.

A.
$$\frac{1}{2}$$

B. $\frac{7}{10}$
C. $\frac{17}{24}$
D. $\frac{11}{15}$

45. The median, the inter-quartile range and the variance of a group of distinct numbers $\{x_1, x_2, x_3, ..., x_{40}\}$ are 15, 10 and 40 respectively. Find the median, the inter-quartile range and the variance of $\{2x_1+3, 2x_2+3, 2x_3+3, ..., 2x_{40}+3\}$.

	Median	Inter-quartile	Variance
		Range	
A.	30	23	160
B.	33	20	80
C.	33	20	160
D.	33	23	83