2021-2022-S5 2nd TERM EXAM-MATH-CP 2

MATHEMATICS Compulsory Part
 PAPER 2

$24^{\text {th }}$ June, 2022
11:00 am - 12:15 pm (1 hour 15 minutes)
Total Marks: 45

INSTRUCTIONS

1. Read carefully the instructions on the Answer Sheet. After the announcement of the start of the examination, you should insert the information required in the spaces provided.
2. When told to open this book, you should check that all the questions are there. Look for the words 'END OF PAPER' after the last question.
3. All questions carry equal marks.
4. ANSWER ALL QUESTIONS. You should use an HB pencil to mark all your answers on the Answer Sheet, so that wrong marks can be completely erased with a clean rubber. You must mark the answers clearly; otherwise you will lose marks if the answers cannot be captured.
5. You should mark only ONE answer for each question. If you mark more than one answer, you will receive NO MARKS for that question.
6. No marks will be deducted for wrong answers.

There are 30 questions in Section A and 15 questions in Section B.
The diagrams in this paper are not necessarily drawn to scale.
Choose the best answer for each question.

Section A

1. $\left(\frac{8^{n+1}}{2^{2 n}}\right)^{2}=$
A. $2^{2 n+2}$.
B. $2^{2 n+6}$.
C. $2^{10 n+2}$.
D. $2^{10 n+6}$.
2. $(a-1)(a+1)(a+b)=$
A. $a^{3}+a^{2} b-a-b$.
B. $a^{3}+a^{2} b+a-b$.
C. $a^{3}-a^{2} b-a-b$.
D. $a^{3}-a^{2} b+a-b$.
3. $\frac{1}{3^{3}}+\frac{1}{2^{7}}=$
A. 0.044 (corr. to 2 significant figures).
B. 0.0448 (corr. to 3 decimal places).
C. 0.04484 (corr. to 4 significant figures).
D. 0.04485 (corr. to 5 decimal places).
4. Let $f(x)=4 x^{3}-10 x^{2}-k x+5$, where k is a constant. If $f(-1)=-14$, then $k=$
A. -13 .
B. -5 .
C. 13 .
D. 25 .
5. If $3(a-b)=a(a+b)$, then $b=$
A. $\frac{a^{2}+3 a}{a-3}$.
B. $\frac{a^{2}+3 a}{3-a}$.
C. $\frac{a^{2}-3 a}{a+3}$.
D. $\frac{3 a-a^{2}}{a+3}$.
6. $\frac{6}{k-6}-\frac{7}{k-7}=$
A. $\frac{k}{(k-6)(7-k)}$.
B. $\frac{k}{(k-6)(k-7)}$.
C. $\frac{k+84}{(k-6)(7-k)}$.
D. $\frac{k+84}{(k-6)(k-7)}$.
7. Let $f(x)=4 x^{3}+k x+3$, where k is a constant. If $f(x)$ is divisible by $2 x+1$, find the remainder when $f(x)$ is divided by $x+1$.
A. -7
B. -6
C. 0
D. 5
8. Find the range of values of k such that the quadratic equation $x^{2}-8 x+1=k$ has two distinct real roots.
A. $k>-15$
B. $k<-15$
C. $k>17$
D. $k<17$
9. In the figure, $y=f(x)$ is the graph of a quadratic function. $f(x)=$

A. $(x-1)(x-5)$.
B. $-(x+1)(x+5)$.
C. $-2(x-1)(x-5)$.
D. $-2(x+1)(x+5)$.
10. Solve the compound inequality

$$
7-3 x<1 \text { or } 2 x+1>9
$$

A. No solutions
B. $x>2$
C. $x>4$
D. $2<x<4$
11. A sum of $\$ 6200$ is deposited at an interest rate of 2% per annum for 3 years, compounded monthly. Find the interest correct to the nearest dollar.
A. $\$ 372$
B. $\$ 378$
C. $\$ 379$
D. $\$ 383$
12. The scale of a map is $1: 400000$. If the area of a national park on the map is $36 \mathrm{~cm}^{2}$, then the actual area of the national park is
A. $\quad 144 \mathrm{~km}^{2}$.
B. $576 \mathrm{~km}^{2}$.
C. $1440 \mathrm{~km}^{2}$.
D. $57600 \mathrm{~km}^{2}$.
13. If an electric fan is sold at a discount of 12% on its marked price, then the discount is $\$ 27$ and the percentage loss is 10%. Find the cost of the electric fan.
A. $\$ 220$
B. $\$ 226.8$
C. $\$ 250$
D. $\$ 280$
14. It is given that r varies directly as the square of p and inversely as q. If r is increased by 80% and q is decreased by 20%, then p
A. is increased by 20%.
B. is increased by 44%.
C. is decreased by 40%.
D. is decreased by 60%.
15. In the figure, D, E and F are points lying on $A B, A C$ and $B C$ respectively such that $A F$ cuts $D E$ perpendicularly at G.

If $\angle B A F=\angle C A F=\angle A E D=\angle F E D$, which of the following must be true?
I. $\triangle A D G \cong \triangle E F G$
II. $\triangle A D G$ is an isosceles triangle.
III. $\angle B A C=90^{\circ}$
A. I and II only
B. I and III only
C. II and III only
D. I, II and III
16. Convert the polar coordinates $\left(10,240^{\circ}\right)$ into rectangular coordinates.
A. $(-5,-5 \sqrt{3})$
B. $(5,5 \sqrt{3})$
C. $(-5 \sqrt{3},-5)$
D. $(5 \sqrt{3}, 5)$
17. $\sin \left(\theta-270^{\circ}\right)+\frac{2 \sin \left(180^{\circ}+\theta\right)}{\tan (-\theta)}=$
A. $-\cos \theta$.
B. $3 \cos \theta$.
C. $\sin \theta-2 \cos \theta$.
D. $2 \cos \theta-\sin \theta$.
18. It is given that a moving point P is equidistant from $(1,2)$ and $(7,4)$, find the equation of the locus of P.
A. $3 x+y+15=0$
B. $x+3 y-13=0$
C. $3 x+y-15=0$
D. $x-y+6=0$
19. Which of the following statement(s) about a regular 10 -sided polygon is / are true?
I. The number of axes of reflectional symmetry is 5 .
II. Each exterior angle is 36°.
III. Each interior angle is 144°.
A. II only
B. I and III only
C. II and III only
D. I, II and III
20. In the figure, the solid consists of two identical right circular cones. The height and the circumference of the base of one circular cone are 4 cm and $6 \pi \mathrm{~cm}$ respectively. Find the total surface area of the solid.
A. $18 \pi \mathrm{~cm}^{2}$
B. $24 \pi \mathrm{~cm}^{2}$
C. $30 \pi \mathrm{~cm}^{2}$
D. $48 \pi \mathrm{~cm}^{2}$

21. In the figure, $O P Q$ is a sector of radius $10 \mathrm{~cm} . R$ is a point lying on $O P$ such that $Q R$ is perpendicular to $O P$. If $P R=2 \mathrm{~cm}$, find the area of the shaded region $P Q R$ correct to the nearest $0.1 \mathrm{~cm}^{2}$.

A. $8.2 \mathrm{~cm}^{2}$
B. $15.8 \mathrm{~cm}^{2}$
C. $22.3 \mathrm{~cm}^{2}$
D. $32.2 \mathrm{~cm}^{2}$
22. In the figure, B is a point lying on $A C$ such that $A B: B C=2: 3 . G$ and E are points lying on $A D . B G$ produced and $C E$ produced meet at F such that $F E: C E=1: 2$. It is given that $B F / / C D$. If the area of $\triangle C D E$ is $20 \mathrm{~cm}^{2}$, then the area of the quadrilateral $B C E G$ is

A. $20 \mathrm{~cm}^{2}$.
B. $22 \mathrm{~cm}^{2}$.
C. $27 \mathrm{~cm}^{2}$.
D. $38 \mathrm{~cm}^{2}$.
23. In the figure, the equations of the straight lines L_{1} and L_{2} are $a x+b y=1$ and $c x+3 y=1$ respectively.

Which of the following are true?
I. $\quad a<0$
II. $0<b<3$
III. $c>0$
A. I and II only
B. I and III only
C. II and III only
D. I, II and III
24. A circle C lies in the fourth quadrant. Which of the following can be the equation of C ?
A. $x^{2}+y^{2}-6 x+4 y+4=0$
B. $x^{2}+y^{2}-4 x+8 y+11=0$
C. $x^{2}+y^{2}-12 x-14 y+21=0$
D. $x^{2}+y^{2}-10 x+10 y+34=0$
25. In the figure, A, B, C and Q are points lying on the circle. It is given that $\quad \overparen{A Q}=\overparen{Q C} \quad, \angle B A C=54^{\circ}$ and $\angle B C Q=100^{\circ}$. Find $\angle A B C$.

A. 50°
B. 52°
C. 54°
D. 56°
26. In the figure, $B E$ is a diameter of the circle $A B C D E$. If $\angle B A D=75^{\circ}$, then $\angle E C D=$

A. 5°.
B. 10°.
C. 15°.
D. 25°.
27. In the figure, $A B C D$ is a rectangle. $A B=p \quad, \quad B C=q \quad$ and $\angle B A Y=\theta$. Find the distance of C from the straight line $X A Y$.

A. $p \sin \theta+q \cos \theta$
B. $p \cos \theta+q \sin \theta$
C. $\sqrt{p^{2}+q^{2}} \sin \theta$
D. $(p+q) \sin \theta$
28. Two cards are randomly drawn one by one with replacement from seven cards numbered $1,2,3,4,5,6$ and 7 respectively. Find the probability that the product of the two numbers on the cards drawn is an even number.
A. $\frac{1}{7}$
B. $\frac{9}{49}$
C. $\frac{33}{49}$
D. $\frac{5}{7}$
29. The bar chart shows the distribution of the scores obtained by a group of students in a test.

Which of the following is true?
A. The mode of the distribution is 20 .
B. The median of the distribution is 32.5.
C. The lower quartile of the distribution is 20 .
D. The upper quartile of the distribution is 40 .
30. The box-and-whisker diagram below shows the distribution of the heights (in $\mathrm{cm})$ of students in a class.

If the inter-quartile range of the heights of the students is 24 cm , find x.
A. 146
B. 148
C. 150
D. 152

Section B

31. The L.C.M. of $3 a^{4} b^{2} c, 4 a b^{5} c$ and $6 a^{2} b^{3}$ is
A. $a b^{2}$.
B. $a b^{2} c$.
C. $12 a^{4} b^{5} c$.
D. $12 a^{7} b^{9} c$.
32. If $a \neq b$ and $\left\{\begin{array}{l}2 a-a^{2}=5 \\ 2 b-b^{2}=5\end{array}\right.$, then $a^{2}+b^{2}=$
A. -6 .
B. 2 .
C. 4 .
D. 25 .
33. Let k be a real number. The imaginary part of $\left(\frac{k}{3-i}\right)^{2}$ is
A. $\frac{k}{10}$.
B. $\frac{k^{2}}{100}$.
C. $\frac{3 k^{2}}{50}$.
D. $\frac{2 k^{2}}{25}$.
34. $11 \times 16^{11}+12 \times 16^{7}+515=$
A. A000B000020 ${ }_{16}$.
B. $\mathrm{B} 000 \mathrm{C} 000023_{16}$.
C. A000B0000201 1_{16}.
D. B000C0000203 ${ }_{16}$.
35. The graph in the figure shows the linear relation between $\log _{7} x$ and $\log _{7} y$. If $y=a x^{b}$, then

A. $\quad a=\frac{1}{7}$ and $b=-\frac{1}{2}$.
B. $\quad a=-\frac{1}{7}$ and $b=-\frac{1}{2}$.
C. $\quad a=\frac{1}{7}$ and $b=\frac{1}{2}$.
D. $\quad a=7$ and $b=2$.
36. For $0^{\circ} \leq x<360^{\circ}$, how many roots does the equation $6 \cos ^{2} x-13 \cos x=-6$ have?
A. 0
B. 1
C. 2
D. 4
37. The figure shows a shaded region (including the boundary).

If (p, q) is a point lying in the shaded region, which of the following are true?
I. $0 \leq q \leq 5$
II. $q \leq 25-5 p$
III. $q \leq \frac{p}{2}+3$
A. I and II only
B. I and III only
C. II and III only
D. I, II and III
38. In the figure, the perimeter of $\triangle A B C$ is 50 cm . The area of $\triangle A B C=$

A. $\frac{1}{2} \sqrt{125(25-x)(x-5)} \mathrm{cm}^{2}$.
B. $\sqrt{125(25-x)(x-5)} \mathrm{cm}^{2}$.
C. $\sqrt{1125(x+25)(55-x)} \mathrm{cm}^{2}$.
D. $\sqrt{1500(50-x)(x+20)} \mathrm{cm}^{2}$.
39. It is given that k is a non-zero constant. The straight line $6 x-3 y=k$ cuts the x-axis and the y-axis at the points A and B respectively. Let C be a point lying on the x-axis such that the centroid of $\triangle A B C$ lies on the y-axis. Find the x-coordinate of C in terms of k.
A. $-\frac{k}{3}$
B. $-\frac{k}{6}$
C. $-\frac{k}{9}$
D. $-\frac{k}{12}$
40. In the figure, $A B C D$ is a square with diagonal $B D=5 \sqrt{2} \mathrm{~cm}$. If E is a point lying on $B D$ such that $\angle A E D=60^{\circ}$, then $A E=$

A. $\frac{2 \sqrt{3}}{5} \mathrm{~cm}$.
B. $\frac{5 \sqrt{3}}{2} \mathrm{~cm}$.
C. $\frac{3 \sqrt{6}}{5} \mathrm{~cm}$.
D. $\frac{5 \sqrt{6}}{3} \mathrm{~cm}$.
41. In the figure, $A B C$ is the common tangent to the circles $B D E$ and $B F G$ at $B . D B F$ and $E B G$ are straight lines. Which of the following must be true?

I. $\angle A B E=\angle B F G$
II. $D E / / G F$
III. D, E, F and G are concyclic.
A. I and II only
B. I and III only
C. II and III only
D. I, II and III
42. In the figure, the true bearing of Q from P is 060° and that of R from Q is 135°. If $P Q=15 \mathrm{~km}$ and $Q R=20 \mathrm{~km}$, find the distance between P and R correct to nearest km.

A. 7 km
B. 25 km
C. 28 km
D. 32 km
43. Peter, John and 8 other students are arranged to stand in a row. Find the number of possible arrangements such that Peter does not stand at the front and he stands together with John.
A. 40320
B. 362880
C. 685440
D. 725760
44. Bag A contains 4 black balls and 2 white balls while bag B contains 3 black balls and 1 white ball. A ball is randomly drawn from bag A and put into bag B. If a ball is now randomly drawn from bag B, find the probability that the ball drawn is black.
A. $\frac{1}{2}$
B. $\frac{7}{10}$
C. $\frac{17}{24}$
D. $\frac{11}{15}$
45. The median, the inter-quartile range and the variance of a group of distinct numbers $\left\{x_{1}, x_{2}, x_{3}, \ldots, x_{40}\right\}$ are 15,10 and 40 respectively. Find the median, the inter-quartile range and the variance of $\left\{2 x_{1}+3,2 x_{2}+3,2 x_{3}+3, \ldots, 2 x_{40}+3\right\}$.

Median $\begin{gathered}\text { Inter-quartile Variance } \\ \text { Range }\end{gathered}$
A. 30
23
160
B. 33
20
80
C. 33
20
160
D. 33
23
83

