# 2021-2022-S5 2nd TERM EXAM-MATH-CP 1

2021-2022 S5 2<sup>nd</sup> TERM EXAM MATH CP PAPER 1

> 2021 – 2022 S5 Second Term Examination

## **MATHEMATICS Compulsory Part**

## PAPER 1

### **Question–Answer Book**

24<sup>th</sup> June, 2022 8:15 am – 10:30 am (2 hours 15 minutes) **This paper must be answered in English** 

#### INSTRUCTIONS

- 1. Write your name, class and class number in the spaces provided on this cover.
- This paper consists of THREE sections, A(1), A(2) and B.
- Attempt ALL questions in this paper. Write your answers in the spaces provided in this Question – Answer Book. Do not write in the margins. Answers written in the margins will not be marked.
- 4. Unless otherwise specified, all working must be clearly shown.
- 5. Unless otherwise specified, numerical answers should be either exact or correct to 3 significant figures.
- 6. The diagrams in this paper are not necessarily drawn to scale.



| Sections   | Marks |
|------------|-------|
| A (1 – 6)  |       |
| A (7 – 15) |       |
| A Total    | /70   |
| B Total    | /35   |
| TOTAL      | /105  |

Section A(1) (35 marks) 1. Simplify  $\frac{(2\alpha^2\beta^{-3})^4}{\alpha\beta^{-8}}$  and express your answer with positive indices. (3 marks) Answers written in the margins will not be marked 2. Make *b* the subject of the formula  $\frac{a+2b}{3b+4c} = 5$ . (3 marks) **3.** Factorize (a)  $9x^2 - 49$ , **(b)**  $3xy - 7y - 9x^2 + 49$ . (4 marks)

- **4.** The cost of a bag is \$480 and it is sold at a profit percentage of 25%.
  - (a) Find the selling price of the bag.
  - (b) If the bag is sold at a discount of 20% on its marked price, find the marked price of the bag.

(4 marks)

| 5. <i>B</i><br>ori<br>(a)<br>(b | is the reflected image of <i>A</i> with respect to the <i>x</i> -axis. <i>B</i> is rotated anti-clockwise gin <i>O</i> through 90° to <i>C</i> . It is given that the coordinates of <i>A</i> are (8, –4).<br>Write down the coordinates of <i>B</i> and <i>C</i> .<br>Find the mid-point of <i>BC</i> . | about the |
|---------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
|                                 | (                                                                                                                                                                                                                                                                                                        | 4 marks)  |
|                                 |                                                                                                                                                                                                                                                                                                          |           |

| 6. | In the figure, <i>OABC</i> is a sector with the centre <i>O</i> . $\angle AOC = 60^{\circ}$ at $AOC = 6$ | nd the length of <i>ABC</i> is $2\pi$ cm. |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|
|    | (a) Find the length of OC.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                           |
|    | (b) Find the area of segment <i>ACB</i> . (Give your answer in terms o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | f π.)                                     |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (4 marks)                                 |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                           |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                           |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                           |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                           |
| 7. | (a) Solve the compound inequality $\frac{1+x}{2} > \frac{2-x}{3} + 4$ and $3x - 21$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ≤0.                                       |
|    | (b) How many integers satisfy both inequalities in (a)?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (4 marks)                                 |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                           |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                           |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                           |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                           |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                           |

8. In the figure, O is the centre of the circle. A, B, C and D are points lying on the circle. It is given that  $\angle ABO = 32^\circ$ ,  $\angle ADC = 112^\circ$  and  $\angle DCO = 44^\circ$ . Find  $\angle BOC$  and  $\angle BAD$ . (4 marks) Α 112 0 44 C

9. The graph of  $y = 3x^2 + (k-2)x + 12$ , where k > 0, touches the x-axis. (a) Find the value(s) of *k*. (b) Find the *x*-intercept of the graph. (5 marks)

#### Section A(2) (35 marks)

10. Solve  $2\cos^2 x - 2 = -3\sin(90^\circ + x)$  where  $0^\circ \le x \le 360^\circ$ .

(3 marks)

Answers written in the margins will not be marked

| , |
|---|
|   |
|   |
|   |
|   |
|   |
|   |
|   |
|   |
|   |
|   |
|   |
|   |
|   |
|   |
|   |
|   |
|   |
|   |
|   |
|   |
|   |
|   |
|   |
|   |
|   |
|   |
|   |
|   |
|   |
|   |

- 11. (a) Let  $f(x) = x^3 80x^2$ . Find the remainder when f(x) is divided by x 60. (1 mark)
  - (b) It is known that the cost C (in hundred dollars) of a new flat is the sum of two parts, one part is a fixed cost and the other part varies as the cube of the cost M (in hundred dollars) of the materials. When the cost of the materials is 80 hundred dollars, the cost of a new flat is 517 000 hundred dollars; when the cost of the material is 100 hundred dollars, the cost of a new flat is 1 005 000 hundred dollars.
    - (i) Express C in terms of M.
    - (ii) The selling price of a new flat is  $80M^2$  hundred dollars. If the profit of selling a new flat is 67 000 hundred dollars, find the cost of the materials.

(6 marks)

**12.** The box-and-whisker diagram below shows the distribution of the times taken by 44 students to finish a 400 m race.



The inter-quartile range and the range of the distribution are 11 s and 20 s respectively.

- (a) Find a and b.
- (b) The students joined a training program. The cumulative frequency curve below shows the distribution of the times taken by the 44 students to finish a 400 m race after the training.



- (i) The program trainer claims that at least 25% of the 44 students show improvement in the time taken to finish a 400 race after the training. Do you agree? Explain your answer.
- (ii) Candy claims that the distribution of the times taken to finish a 400 m race after training is less dispersed. Do you agree? Explain your answer.

(4 marks)

Answers written in the margins will not be marked 2021-2022-S5 2<sup>nd</sup> TERM EXAM-MATH-CP 1-8

(2 marks)

| <br> |
|------|
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
| <br> |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
| <br> |
|      |
|      |
|      |
|      |
|      |
|      |

| 13. | (a) Prove that $x + 3$ is a factor of $P(x) = x^3 + 4x^2 - 27x - 90$ .<br>(b) Given that $x^2 - 2x - 15$ is a factor of $Q(x) = x^3 + ax^2 + bx + 30$ , find the values of | (1 mark) $a$ and $b$ . |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|
|     | (c) Hence, solve $P(x) + Q(x) = 0$ .                                                                                                                                       | (3 marks)<br>(3 marks) |
|     |                                                                                                                                                                            |                        |
|     |                                                                                                                                                                            |                        |
|     |                                                                                                                                                                            |                        |
|     |                                                                                                                                                                            |                        |
|     |                                                                                                                                                                            |                        |
|     |                                                                                                                                                                            |                        |
|     |                                                                                                                                                                            |                        |
|     |                                                                                                                                                                            |                        |
|     |                                                                                                                                                                            |                        |
|     |                                                                                                                                                                            |                        |
|     |                                                                                                                                                                            |                        |
|     |                                                                                                                                                                            |                        |
|     |                                                                                                                                                                            |                        |
|     |                                                                                                                                                                            |                        |

| 14. Th cer | e coordinates of $P$ , $Q$ and $R$ are (6, 4), (12, 12) and (10, 1) respectively. On the $P$ and passes through $Q$ . | C is a circle with |
|------------|-----------------------------------------------------------------------------------------------------------------------|--------------------|
| (a)        | Find the equation of C.                                                                                               | (2 marks)          |
| (b)        | Show that <i>R</i> lies inside <i>C</i> .                                                                             | (1 mark)           |
| (~)<br>(c) | Let $S$ be a moving point on $C$ When $S$ is closest to $R$                                                           | (1                 |
| (0)        |                                                                                                                       |                    |
|            | (1) describe the geometric relationship between $P$ , $R$ and $S$ , and                                               |                    |
|            | (ii) find the equation of RS.                                                                                         |                    |
|            |                                                                                                                       | (3 marks)          |
|            |                                                                                                                       |                    |
|            |                                                                                                                       |                    |
|            |                                                                                                                       |                    |
|            |                                                                                                                       |                    |
|            |                                                                                                                       |                    |
|            |                                                                                                                       |                    |
|            |                                                                                                                       |                    |
|            |                                                                                                                       |                    |
|            |                                                                                                                       |                    |
|            |                                                                                                                       |                    |
|            |                                                                                                                       |                    |
|            |                                                                                                                       |                    |
|            |                                                                                                                       |                    |
|            |                                                                                                                       |                    |
|            |                                                                                                                       |                    |
|            |                                                                                                                       |                    |
|            |                                                                                                                       |                    |
|            |                                                                                                                       |                    |
|            |                                                                                                                       |                    |
|            |                                                                                                                       |                    |
|            |                                                                                                                       |                    |
|            |                                                                                                                       |                    |

**15.** A hemispherical vessel is held vertically on a horizontal surface. At the beginning, the vessel is fully filled with water. Then, a solid right cylinder of base radius 24 cm is held vertically in the vessel as shown in Figure (a). The base of the cylinder is 6 cm above the lowest point of the vessel.



- (a) Find the volume of water remaining in the vessel in terms of  $\pi$ . (3 marks)
- (b) The solid right cylinder in Figure (a) is removed and left the water in the vessel. Then another solid right cylinder of base radius 48 cm is held vertically in the vessel as shown in Figure (b). Will the water overflow? Explain your answer. (3 marks)

| <br> |
|------|
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |

#### Section B (35 marks)

Answers written in the margins will not be marked

16. In the figure, the shaded region represents the solutions of a system of inequalities. Write down the system of inequalities. (3 marks)





- **17.** A bag contains 3 red balls, 4 green balls and 5 yellow balls. Three balls are drawn at random from the bag.
  - (a) Find the probability that
    - (i) the three balls drawn are of the same colour;
    - (ii) the three balls drawn are of different colours.
  - (b) If the three balls drawn are of the same colour, 10 tokens will be awarded. If the three balls drawn are of different colours, 5 token will be awarded. Otherwise no token will be awarded. Find the expected number of tokens to be awarded. (2 marks)

(4 marks)

| <br> |
|------|
|      |
|      |
|      |
| <br> |
|      |
|      |
|      |
| <br> |
|      |
|      |
| <br> |
|      |
|      |

| 8. | Solve the following equations.<br>(a) $4^{2x-4} = 2.4$<br>(b) $\log_{10}(2x+1) + \log_{10}(3x-7) = \log_{10}(11x+1)$ |           |
|----|----------------------------------------------------------------------------------------------------------------------|-----------|
|    | (b) $\log_2(2x+1) + \log_2(3x-7) = \log_2(11x+1)$                                                                    | (6 marks) |
|    |                                                                                                                      |           |
|    |                                                                                                                      |           |
|    |                                                                                                                      |           |
|    |                                                                                                                      |           |
|    |                                                                                                                      |           |
|    |                                                                                                                      |           |
|    |                                                                                                                      |           |
|    |                                                                                                                      |           |
|    |                                                                                                                      |           |
|    |                                                                                                                      |           |
|    |                                                                                                                      |           |
|    |                                                                                                                      |           |
|    |                                                                                                                      |           |
|    |                                                                                                                      |           |
|    |                                                                                                                      |           |
|    |                                                                                                                      |           |
|    |                                                                                                                      |           |

**19.** A ship sails 3 km from A to B on a bearing of N30°E and then sails 8 km from B to C on a bearing of N70°W.



Answers written in the margins will not be marked

| (a) S                                  | how that $y^2 - 4y + 3 = 0$ .                                                              | (2 mark |  |  |  |  |
|----------------------------------------|--------------------------------------------------------------------------------------------|---------|--|--|--|--|
| (b) (                                  | ven that there are two points $Q(5, -6)$ and $P. P$ lies on $L$ such that $AB: BP = 2:1$ . |         |  |  |  |  |
| (i) Find the coordinates of <i>P</i> . |                                                                                            |         |  |  |  |  |
| (                                      | (ii) Someone claims that $PQ$ is a tangent to the circle C. Do you agree?                  |         |  |  |  |  |
|                                        | answer.                                                                                    | (5 mark |  |  |  |  |
|                                        |                                                                                            |         |  |  |  |  |
|                                        |                                                                                            |         |  |  |  |  |
|                                        |                                                                                            |         |  |  |  |  |
|                                        |                                                                                            |         |  |  |  |  |
|                                        |                                                                                            |         |  |  |  |  |
|                                        |                                                                                            |         |  |  |  |  |
|                                        |                                                                                            |         |  |  |  |  |
|                                        |                                                                                            |         |  |  |  |  |
|                                        |                                                                                            |         |  |  |  |  |
|                                        |                                                                                            |         |  |  |  |  |
|                                        |                                                                                            |         |  |  |  |  |
|                                        |                                                                                            |         |  |  |  |  |
|                                        |                                                                                            |         |  |  |  |  |
|                                        |                                                                                            |         |  |  |  |  |
|                                        |                                                                                            |         |  |  |  |  |
|                                        |                                                                                            |         |  |  |  |  |
|                                        |                                                                                            |         |  |  |  |  |
|                                        |                                                                                            |         |  |  |  |  |
|                                        |                                                                                            |         |  |  |  |  |
|                                        |                                                                                            |         |  |  |  |  |
|                                        |                                                                                            |         |  |  |  |  |
|                                        |                                                                                            |         |  |  |  |  |
|                                        |                                                                                            |         |  |  |  |  |
|                                        |                                                                                            |         |  |  |  |  |
|                                        |                                                                                            |         |  |  |  |  |
|                                        |                                                                                            |         |  |  |  |  |
|                                        |                                                                                            |         |  |  |  |  |
|                                        |                                                                                            |         |  |  |  |  |
|                                        |                                                                                            |         |  |  |  |  |
|                                        |                                                                                            |         |  |  |  |  |
|                                        |                                                                                            |         |  |  |  |  |
|                                        |                                                                                            |         |  |  |  |  |
|                                        |                                                                                            |         |  |  |  |  |
|                                        |                                                                                            |         |  |  |  |  |
|                                        |                                                                                            |         |  |  |  |  |

**20.** A straight line L: x-3y+6=0 cuts the circle  $C: x^2+y^2-2x+2y-18=0$  at A and B. Given

21. The table below shows the mean, the median, the standard deviation and the range of the marks in two guizzes.

| Quiz   | Mean | Median | Standard Deviation | Range |
|--------|------|--------|--------------------|-------|
| Quiz 1 | 50.2 | X      | 12.3               | 60    |
| Quiz 2 | 60.5 | 63     | 14.2               | 80    |

Find *X* if the marks in Quiz 1 are normally distributed. **(a)** 

- A student, Peter, gets 43 marks in Quiz 1 and 52 marks in Quiz 2. In which quiz does he **(b)** perform better? Explain your answer. (2 marks)
- In order to adjust the marks, 3 marks are added to all students in Quiz 2. (c)
  - Write down the new mean and the new standard deviation in Quiz 2. (i)
  - (ii) Describe the change in the standard score of Peter in Quiz 2.

(3 marks)

Answers written in the margins will not be marked

| <br> |  |
|------|--|
|      |  |
| <br> |  |
|      |  |
|      |  |
|      |  |
|      |  |
|      |  |

 $<sup>(1 \</sup>text{ mark})$