2021-2022 S5 1st TERM EXAM-MATH-CP 2

2021 – 2022 S5 First Term Examination

MATHEMATICS Compulsory Part

PAPER 2

6th January, 2022 10:30 am – 11:30 am (1 hour)

INSTRUCTIONS

- 1. Read carefully the instructions on the Answer Sheet. After the announcement of the start of the examination, you should insert the information required in the spaces provided.
- 2. When told to open this book, you should check that all the questions are there. Look for the words 'END OF PAPER' after the last question.
- 3. All questions carry equal marks.
- 4. **ANSWER ALL QUESTIONS**. You should use an HB pencil to mark all your answers on the Answer Sheet, so that wrong marks can be completely erased with a clean rubber. You must mark the answers clearly; otherwise you will lose marks if the answers cannot be captured.
- 5. You should mark only **ONE** answer for each question. If you mark more than one answer, you will receive **NO MARKS** for that question.
- 6. No marks will be deducted for wrong answers.

There are 24 questions in Section A and 12 questions in Section B. The diagrams in this paper are not necessarily drawn to scale. Choose the best answer for each question.

Section A

1.
$$\frac{(9k^{-2})^2}{3k^2} =$$

A. $\frac{6}{L^2}$.

2. Which of the following is false?

- A. All non-terminating decimal numbers are irrational.
- B. All prime numbers are rational numbers.
- C. All surds are real numbers.
- D. Zero is neither positive nor negative.

3. If
$$\frac{1}{x} = \frac{y - 2z}{y + 2z}$$
, then $z =$
A. $\frac{y}{2}$.
B. $\frac{y(x-1)}{4}$.
C. $\frac{y(x+1)}{2(x-1)}$.

D. $\frac{y(x-1)}{2(x+1)}$

4.
$$(a+b)(a^2-ab-b^2) =$$

A. $(a+b)^3$.
B. a^3+b^3 .
C. $a^3-2ab^2-b^3$.
D. $a^3+2a^2b-2ab^2-b^3$.

5.
$$\left(\frac{\pi}{5}\right)^3 =$$

- A. 0.24 (correct to 2 significant figures).
- B. 0.2480 (correct to 3 decimal places).
- C. 0.2481 (correct to 4 significant figures).
- D. 0.24810 (correct to 5 decimal places).
- A sum of \$2000 is deposited at an interest rate of 12% per annum for 2 years, compounded half yearly. Find the interest correct to the nearest dollar.
 - A. \$480
 - B. \$509
 - C. \$525
 - D. \$539
- 7. If α is a root of the equation $2x^2 - 5x - 1 = 0$, then $7 + 15\alpha - 6\alpha^2 =$ A. -10. B. -7. C. 4. D. 10.

2021-2022 S5 1st TERM EXAM-MATH-CP 2-3

- 8. Let k be a constant. Find the range of values of k such that the quadratic equation $x^2 10x + k = -9$ has two distinct real roots.
 - A. k < 16
 - B. k > 16
 - C. k < 25
 - D. k > 25

9. Let $f(x) = (x-1)^3 - 6(x-1) + 4$. Which of the following is a factor of f(x)?

- A. x + 1B. x - 2
- C. x + 2
- D. x 3

10. The solution of 2x-13 < 7 or 18-11x > -4 is A. x < 2. B. x < 10. C. 2 < x < 10. D. x < 2 or x > 10.

- 11. Let $f(x) = x^3 + 3x^2 8x 7$. When f(x) is divided by x+3, the remainder is
 - A. -37.
 - B. -31.
 - C. 17.
 - D. 23.

12. The figure shows the graph of the quadratic function y = f(x). If the coordinates of the vertex of the graph are (-2, 8), then f(x) =

- A. $-2(x+2)^2 + 8$. B. $-2(x-2)^2 + 8$. C. $-(x+2)^2 + 8$. D. $-(x+2)^2 - 8$.
- 13. Let f(x) = kx + (k-5), where k is a constant. If f(5) = -3k + 4, then k =A. -5. B. 1. C. 2. D. 3.
- 14. If *a* varies directly as the square of *b* and inversely as the cube of *c*, which of the following must be constant?

A.
$$\frac{a}{b^2c^3}$$

B.
$$\frac{a^2}{bc^2}$$

C.
$$\frac{b}{a^2c^6}$$

D.
$$\frac{b^2}{ac^3}$$

- 15. It is given that z varies directly as the square of x and directly as \sqrt{y} . If x is increased by 30% and y is decreased by 75%, then z is
 - A. increased by 84.5%.
 - B. decreased by 84.5%.
 - C. increased by 15.5%.
 - D. decreased by 15.5%.
- 16. It is given that y partly varies directly as x and partly varies directly as x^2 . y=3when x=1 and y=8 when x=2. Find the relation between x and y.
 - A. $y = x + 2x^2$
 - $B. \quad y = 2(x + x^2)$
 - C. $y = x + 4x^2$
 - D. $y = 2x + x^2$
- 17. In the figure, O is the centre of the circle *ABC*. Find *x*.

18. In the figure, chord *AB* and chord *CD* are produced to meet at *E*. If $\widehat{BA}: \widehat{AC}: \widehat{CD} = 3:4:6$, find $\angle AEC$.

19. In the figure, the equations of the straight lines L_1 and L_2 are ax + y = b and cx + y = d respectively.

Which of the following are true?

- I. a > c
- II. d > b
- III. ad < bc
- A. I and II only
- B. I and III only
- C. II and III only
- D. I, II and III

- 20. Which of the following straight lines is perpendicular to the straight line
 - $\frac{x}{3} \frac{y}{5} = 1?$ A. 3x + y - 12 = 0B. 3x - y - 15 = 0C. 3x - 5y + 15 = 0
 - D. 3x + 5y 12 = 0
- 21. If the graph of $y = x^2 + kx + k$ has two *x*-intercepts, find the range of possible values of *k*.
 - A. k < 0 or k > 4
 - B. 0 < k < 4
 - C. k > 0
 - D. k > 4
- 22. The box-and-whisker diagram below shows the distribution of the weights (in kg) of a group of students.

Which of the following is/are true?

- I. The median is 52 kg.
- II. The range is 20 kg.
- III. The inter-quartile range is 6 kg.
- A. I only
- B. I and III only
- C. II and III only
- D. I, II and III

- 23. It is given that the median and the mode of the seven numbers 7, 3, 2, 3, 7, *x* and *y* are 6 and 7 respectively. Find the mean of the five numbers 2, 3, 3, *x* and *y*.
 - A. 4.2B. 4.8
 - C. 5
 - D. 6
- 24. The stem-and-leaf diagram below shows the distribution of the scores obtained by 16 students in a quiz.

Stem_
 Leaf_

 (10 marks)
 (1 mark)

 0
 0
 1
 4

 1

$$m$$
 m
 2

 2
 0
 1
 2
 7
 8
 9

 3
 n
 n
 8
 4
 3
 5

If the inter-quartile range of the above distribution is more than 24 marks, which of the following is/are true?

- I. $0 \le m < 4$
- II. *n* must be greater than 5
- III. n-m > 4
- A. I and II only
- B. I and III only
- C. II and III only
- D. I, II and III

Section **B**

25. The L.C.M. of $x^2 + 2x + 1$, $3x^2 + 2x - 1$ and $x^3 + 1$ is A. x + 1. B. $(x+1)(3x-1)(x^2 - x + 1)$. C. $(x+1)^2(3x-1)(x^2 + x + 1)$. D. $(x+1)^2(3x-1)(x^2 - x + 1)$.

26. If $\alpha \neq \beta$ and $\alpha^2 + \alpha = \beta^2 + \beta = 3$, then $3^{\alpha} \times 3^{\beta} =$ A. $\frac{1}{27}$. B. $\frac{1}{3}$. C. 3. D. 27.

27. Let *a* and *b* be positive constants. The graph in the figure shows the linear relation between *x* and $\log_{10} y$. If $y = ab^x$, then

28.
$$\frac{2 \log x^2}{\log(3x) + \log x - \log 3} =$$
A.
$$\frac{1}{2}$$
B. 2.
C.
$$\frac{\log x}{\log\left(\frac{x}{3}\right)}$$
D.
$$\frac{\log x}{\log(3x)}$$

- 29. If the roots of the equation $(\log_{\pi} x)^2 - 10 \log_{\pi} x + 24 = \log_{\pi} x$ are α and β , then $\alpha\beta =$ A. π^{24} . B. π^{11} . C. 10. D. 24.
- 30. If k is a real number, then the imaginary

part of
$$\frac{i^{2020}}{k+i^{2019}}$$
 is
A. $\frac{1}{k^2+1}$.
B. $-\frac{1}{k^2+1}$.
C. $\frac{k}{k^2+1}$.
D. $\frac{1}{k^2-1}$.

- 31. Which of the following systems of inequalities has its solution represented by the shaded region in the figure?
 - y 8 (8, 6) 6 4 x
 - $x \ge 0$ $y \le 6$ A. $2x + y - 8 \ge 0$ $3x \ge 4y$ $x \ge 0$ $v \le 6$ B. $2x + y - 8 \le 0$ $3x \le 4y$ $x \le 6$ $y \ge 0$ C. $2x + y - 8 \ge 0$ $3x \ge 4y$ $\left(x < 6\right)$

D.
$$\begin{cases} x \ge 0 \\ y \ge 0 \\ 2x + y - 8 \le 0 \\ 3x \le 4y \end{cases}$$

32. Among the points in the figure, at which point does P = 3x + y attain its maximum value?

- A. (7, 1)
- B. (5, 4)
- C. (3, 4)
- D. (1, 3)
- 33. The figure shows a circle *ABCD*. *PQ* is a tangent to the circle at *C*. It is known that *PBAR* and *CDR* are straight lines. If $\angle APC = 26^\circ$, $\angle ADC = 102^\circ$ and *AD* is the angle bisector of $\angle RAC$, find $\angle ARD$.

34. In the figure, *ABC* and *CDE* are circles such that *ADC* is a straight line. *PQ* is the common tangent to the two circles at *C*. *AB* is the tangent to the circle *CDE* at *E*. If $\angle ADE = 100^{\circ}$ and $\angle BCQ = 35^{\circ}$, then $\angle ABC =$

- A. 55°.
- B. 65°.
- C. 70°.
- D. 80°.

- 35. The scores of Jackson and Alex in a English test are 56 marks and 73.5 marks respectively, while their standard scores are -2 and 0.5 respectively. Find the standard deviation of the scores in the test.
 - A. 7 marks
 - B. 11.7 marks (corr. to 3 sig. fig.)
 - C. 49 marks
 - D. 70 marks
- 36. The variance of a set of numbers is 10. If10 is added to each number and then eachresult is increased by 200%, then thevariance of the new set of numbers is
 - A. 30.
 - B. 40.
 - C. 90.
 - D. 180.

END OF PAPER