
2021-2022-S4 2nd TERM EXAM-MATH-CP 2

2021 – 2022 S4 Second Term Examination

MATHEMATICS Compulsory Part

PAPER 2

20th June, 2022 10:15 am – 11:15 am (1 hour) Total Marks: 36

INSTRUCTIONS

- 1. Read carefully the instructions on the Answer Sheet. After the announcement of the start of the examination, you should insert the information required in the spaces provided.
- 2. When told to open this book, you should check that all the questions are there. Look for the words 'END OF PAPER' after the last question.
- 3. All questions carry equal marks.
- 4. **ANSWER ALL QUESTIONS**. You should use an HB pencil to mark all your answers on the Answer Sheet, so that wrong marks can be completely erased with a clean rubber. You must mark the answers clearly; otherwise you will lose marks if the answers cannot be captured.
- 5. You should mark only **ONE** answer for each question. If you mark more than one answer, you will receive **NO MARKS** for that question.
- 6. No marks will be deducted for wrong answers.

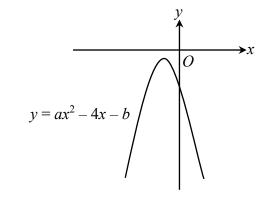
There are 24 questions in Section A and 12 questions in Section B. The diagrams in this paper are not necessarily drawn to scale. Choose the best answer for each question.

Section A

81⁴ⁿ 1. $\overline{(27^{2n})(3^{-2n})}$ 9²ⁿ. A. B. 9⁶ⁿ. C. 9⁸*n*. **9**¹²ⁿ D.

- 2. If k(2-c) = -c(k-3), then k =
 - A. $\frac{3}{2}c$. B. $-\frac{3}{2}c$.

 - C. $\frac{c-3}{c+2}$.
 - D. $\frac{c+3}{c+2}$.
- 3. $a^3 + a^2 ab^2 b^2 =$
 - A. 2(a+b)(a-b).
 - B. $(a+1)(a-b)^2$.
 - C. (a-1)(a+b)(a-b).
 - D. (a+1)(a+b)(a-b).
- The marked price of a book is x% higher 4. than its cost. If the book is sold at a discount of 10%, the percentage profit is 35%. Find *x*.
 - A. 38.5
 - 45 B.
 - C. 47.5
 - 50 D.


5.
$$\frac{3}{3-y} - \frac{2}{2-y} =$$

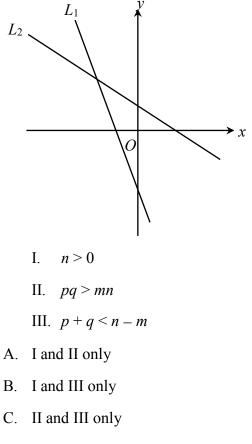
A. $\frac{y}{(y-3)(2-y)}$
B. $\frac{y}{(y-3)(y-2)}$
C. $\frac{5y}{(y-3)(2-y)}$
D. $\frac{5y}{(y-3)(y-2)}$

- Which of the following are irrational 6. numbers?
 - $\sqrt{\frac{1}{3}}$ I. II. $\cos 30^\circ - 2$ III. 3.102 A. I and II only B. I and III only C. II and III only
 - D. I, II and III
- 7. Let m be a non-zero constant. If the quadratic equation $mx^2 - 3(mx - 1) = 0$ has equal roots, then m =

A.
$$-\frac{4}{3}$$
.
B. $-\frac{4}{9}$.
C. $\frac{4}{9}$.
D. $\frac{4}{3}$.

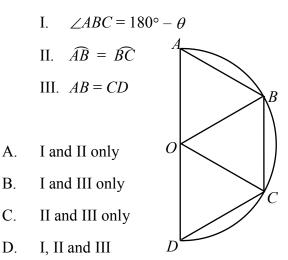
- 8. Let f(x) = (1 x)(x + 2) k, where *k* is a constant. If f(0) = 3, then k =
 - A. -1.
 - B. 0.
 - C. 1.
 - D. 1.5.
- 9. If g(x) = -3(x+2), then g(x) g(x-1) =
 - A. -5.
 - B. -3.
 - C. 3.
 - D. 9.
- 10. Let *v* and *w* be two non-zero real constants. Which of the following statements about the graph of $y = -(x + v)^2 - w^2$ are true?
 - I. The graph opens downward.
 - II. The *y*-intercept of the graph is negative.
 - III. The graph intersects the *x*-axis.
 - A. I and II only
 - B. I and III only
 - C. II and III only
 - D. I, II and III
- 11. Which of the following statements about the graph of y = 18 x(3 + x) is true?
 - A. The graph passes through the point (-4, 21).
 - B. The *y*-intercept of the graph is 15.
 - C. The equation of the axis of symmetry of the graph is x = -1.5.
 - D. The graph has no *x*-intercepts.

12. The figure shows the graph of $y = ax^2 - 4x - b$, where *a* and *b* are constants. Which of the following is true?

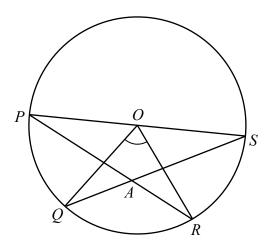


- A. a < 0 and ab > -4B. a < 0 and ab < -4C. a > 0 and ab > -4D. a > 0 and ab > -4
- 13. Let c be a constant. The graph of $y = 2x^2 4x + c$ cuts the y-axis at (0, -30). The coordinates of the vertex of the graph are
 - A. (-1, -24). B. (-1, -12).
 - C. (1, -32).
 - D. (1, -16).
- 14. Let k be a constant. If $x^3 kx^2 + x + 6$ is divisible by x-2, then k =
 - A. 16.
 - B. 4.
 - C. 0.
 - D. -4.

15. When a polynomial g(x) is divided by x+1, the quotient is $2x^2-3x+5$. If g(-1) = -3, then g(2) =


- A. –22.
- B. 3.
- C. 18.
- D. 23.
- 16. If a polynomial g(x) is divisible by x-2, which of the following must be a factor of g(2x-1)?
 - A. *x*-2
 - B. 2x+1
 - C. 2x 1
 - D. 2x 3
- 17. The coordinates of the points *P*, *Q* and *R* are (-6, 4), (1, 0) and (5, 2) respectively. If *Y* is the mid-point of *QR*, Find the equation of the straight line which passes through *P* and *Y*.
 - A. x + y + 2 = 0
 - B. x + 3y 6 = 0
 - C. 3x + y 10 = 0
 - D. 3x + y + 14 = 0

- 18. The equation of the straight line L is ax + by 1 = 0, where a and b are constants. If L is perpendicular to the straight line 6x + 4y + 3 = 0 and passes through the point (4, 3), find the *x*-intercept of L.
 - A. $-\frac{1}{2}$ B. $\frac{1}{3}$ C. 6 D. 9
- 19. In the figure, the equations of the straight lines L_1 and L_2 are mx - ny = 2 and px + qy = -3 respectively. Which of the following are true?

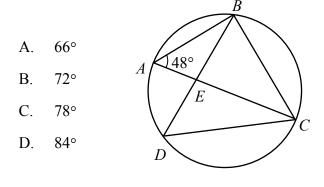


D. I, II and III

20. In the figure, *O* is the centre of the semi-circle *ABCD*. If *OB* // *DC* and $\angle OCD = \theta$, which of the following must be true?



21. In the figure, *O* is the centre of the circle *PQRS*. *PS* is a diameter of the circle. *PR* and *QS* intersect at the point *A*. If $\angle QAR = 126^{\circ}$, find $\angle QOR$.



- A. 36°
- B. 54°
- C. 63°
- D. 72°

22. In the figure, *O* is the centre. *OC* and *AB* intersect at a point *D* and AD = BD. Which of the following must be true?

23. In the figure, AC is a diameter of circle ABCD. AC and BD intersect at E. If BD = CD and $\angle BAC = 48^\circ$, find $\angle BEC$.

- 24. If $y = x^2 6 = 4x 6$, then y =
 - A. 0.
 - B. 10.
 - C. 0 or 4.
 - D. -6 or 10.

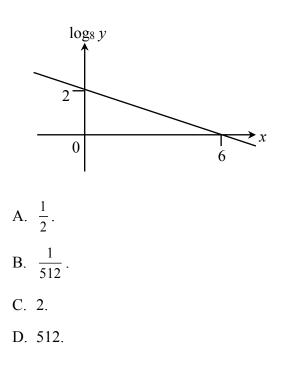
Section **B**

If α is a real number, then the real part of 25. $\frac{2i-\alpha}{1}$ is

$$3i-1$$
A. $\frac{\alpha}{10}$
B. α .
C. $\frac{6+\alpha}{10}$
D. $\frac{6-\alpha}{2}$

8

26. If
$$a > 0$$
, then $\frac{2a\sqrt{2a}}{3} - \frac{3a^3}{\sqrt{2a^3}} =$
A. $-\frac{7}{3}a^2$.
B. $-\frac{7}{3}a\sqrt{2a}$.
C. $-\frac{5}{6}a^2$.
D. $-\frac{5}{6}a\sqrt{2a}$.


- 27. If $a \neq b$ and $3a^2 7a = 3b^2 7b = 12$, then (a-6)(b-6) =
 - A. 18.
 - B. 26.
 - C. 46.
 - D. 54.

28. If
$$3^{1-x} \cdot \sqrt{27^x} = 9^{x+2}$$
, then $3^{\frac{x}{4}} =$
A. $-\frac{3}{2}$.
B. $-\frac{1}{2}$.
C. $\frac{\sqrt{3}}{3}$.
D. $\frac{2}{3}$.

29. If
$$3 = 10^{m}$$
 and $2 = 10^{n}$, then $\log \frac{20}{81} =$
A. $n - 4m$.
B. $1 + n - 4m$.
C. $\frac{n}{4m}$.
D. $\frac{1+n}{4m}$.

4m

30. The graph below shows the linear relation between x and $\log_8 y$. If $y = cd^x$, then d =

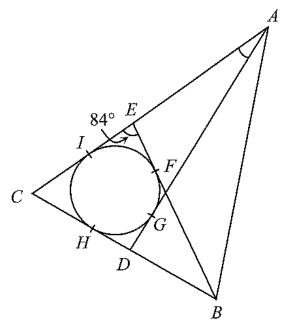
31. Ivan kicks football а upwards. The football is h m above the ground after kicking up for t s, where $h = -t^2 + 4.8t + 1$. Find the time required and the height from the ground for the football reaching its highest position.

	Time required	Height	
A.	2.4 s	4.76 m	
B.	4.8 s	4.76 m	
C.	2.4 s	6.76 m	
D.	4.8 s	6.76 m	

32. In the figure, *PQ* and *PR* are the tangents to the circle *ABC* at *A* and *C* respectively.

If
$$\angle QPR = \frac{x}{2}$$
, then $\angle ABC =$
 A
 Q
 A
 R
 A
 R
 A
 R
 A
 R
 B
 $90^{\circ} - \frac{x}{4}$.
 C
 $90^{\circ} + \frac{x}{4}$.
 D . $90^{\circ} + \frac{x}{2}$.

- 33. The H.C.F. and the L.C.M. of three expressions are $a^7b^7c^3$ and $a^9b^8c^{10}$ respectively. If the first expression and the second expression are $a^7b^8c^7$ and $a^8b^8c^{10}$ respectively, then the third expression is
 - A. $a^8b^8c^3$.
 - B. $a^8b^8c^7$.
 - C. $a^9b^7c^3$.
 - D. $a^9b^7c^7$.


34.
$$\frac{2}{x-3} + \frac{1+x}{(3-x)(3+x)} =$$

A. $\frac{x+2}{x^2-9}$.
B. $\frac{x+5}{x^2-9}$.
C. $\frac{3x+2}{x^2-9}$.
D. $\frac{3x+5}{x^2-9}$.

35. In the figure, *MP* is a diameter of the circle *MNPQ*. *XY* is the tangent to the circle at *Q*. *PX* and *MQ* intersect at the point *T*. *NP* is perpendicular to *PX*. If $\angle NMP = 52^{\circ}$ and $\angle PXY = 14^{\circ}$, then $\angle MTP =$

- A. 90°.
- B. 102°.
- C. 104°.
- D. 114°.

36. In the figure, *BE*, *AD*, *BC* and *AC* are the tangents to the circle at *F*, *G*, *H* and *I* respectively. It is given that *BE* is the angle bisector of $\angle ABC$ and AE = BE. If $\angle BEC = 84^{\circ}$ and FG : GH = 1:2, find $\angle CAD$.

- A. 15°
- B. 21°
- C. 36°
- D. 38°

END OF PAPER

2021 – 2022 2nd Term Examination

F.4 Mathematics (Compulsory Part) Paper 2

1.	В	11. C	21. D	31. C
2.	А	12. B	22. C	32. C
3.	D	13. C	23. B	33. C
4.	D	14. B	24. D	34. B
5.	А	15. C	25. C	35. B
6.	А	16. D	26. D	36. D
7.	D	17. B	27. A	
8.	А	18. A	28. C	
9.	В	19. D	29. B	
10.	А	20. A	30. A	