2021-2022 S4 1st TERM EXAM-MATH-CP 2

2021 – 2022 S4 First Term Examination

MATHEMATICS Compulsory Part

PAPER 2

4th January, 2022 9:45 am – 10:30 am (45 minutes)

INSTRUCTIONS

- 1. Read carefully the instructions on the Answer Sheet. After the announcement of the start of the examination, you should insert the information required in the spaces provided.
- 2. When told to open this book, you should check that all the questions are there. Look for the words 'END OF PAPER' after the last question.
- 3. All questions carry equal marks.
- 4. **ANSWER ALL QUESTIONS**. You should use an HB pencil to mark all your answers on the Answer Sheet, so that wrong marks can be completely erased with a clean rubber. You must mark the answers clearly; otherwise you will lose marks if the answers cannot be captured.
- 5. You should mark only **ONE** answer for each question. If you mark more than one answer, you will receive **NO MARKS** for that question.
- 6. No marks will be deducted for wrong answers.

There are 18 questions in Section A and 9 questions in Section B. The diagrams in this paper are not necessarily drawn to scale. Choose the best answer for each question.

Section A

1. Simplify
$$\frac{(3x^2y^0)^2}{9x^5y^2}$$
.
A.
$$\frac{1}{xy^2}$$

B.
$$\frac{3}{xy^2}$$

C.
$$\frac{1}{3xy}$$

D.
$$\frac{1}{x}$$

- 2. ab-ac-bm+cm+bn-cn =
 - A. (b-c)(a-m+n).
 - B. (b+c)(a+m-n).
 - C. (b+c)(a-m+n).
 - D. (b-c)(a+m-n).
- 3. If p and q are constants such that $x^2 + 4x + p \equiv (x-2)(x+q) + 10$, then p =
 - А. –6.
 - B. –2.
 - C. 6.
 - D. 12.
- 4. Solve the equation (x+1)x = 3(x+1).
 - A. x = -1
 - B. x = -1 or 3
 - C. x = 3
 - D. x = 1 or 3

- 5. If *N* is a positive integer, which of the following must be an even number?
 - I. 4N+2
 - II. $(N+1)^2 + 6$
 - III. $6^N + 2$
 - A. II only
 - B. III only
 - C. I and II only
 - D. I and III only
- 6. $0.1\dot{3}\dot{1} =$

A.
$$\frac{13}{100}$$
.
B. $\frac{130}{999}$.
C. $\frac{131}{999}$.
D. $\frac{13}{99}$.

- 7. Which of the following is the domain of the function $y = -\frac{1}{\sqrt{x}}$?
 - A. All positive real numbers
 - B. All real numbers except 0
 - C. All negative real numbers
 - D. All non-negative real numbers

8. The figure shows the graph of y = ax + b.

Find the values of *a* and *b*.

- A. a = 4 and b = 5B. a = 5 and b = 4C. $a = -\frac{4}{5}$ and b = 4D. a = -4 and $b = -\frac{4}{5}$
- 9. If $f(x) = 6x^2 3x 2$, then f(a) - f(-a) =
 - A. 0.
 - B. -6a.
 - C. $12a^3$.
 - D. $12a^3 6a$.
- 10. Which of the following have the same minimum value of *y*?
 - I. $y = 4x^2 + 4x + 11$ II. $y = x^2 + 4x - 6$
 - III. $y = (3-x)^2 10$
 - A. I and II only
 - B. I and III only
 - C. II and III only
 - D. I, II and III

11. Which of the following may represent the graph of $y = 2x^2 + 7x + 3$?

12. Which of the following does NOT represent that y is a function of x?

A.
$$y = 5 - x$$

B. $y = x^{2} + 9x - 12$
C. $y = x^{3} + \frac{1}{x}$
D. $y^{2} = 4x$

13. In the figure, *CM* is the perpendicular bisector of *AB*. Find the equation of *CM*.

- A. x + 2y + 6 = 0
- $B. \quad x+2y-18=0$
- $C. \quad 2x + y + 3 = 0$
- D. 2x + y 9 = 0
- 14. The graph shown represents the straight line ax+by+c=0. If *c* is a negative real number, which of the following is true?

- 15. When $x^{2468} + 1$ is divided by x + 1, the remainder is
 - A. -1.
 - B. 0.
 - C. 1.
 - D. 2.

- 16. Which of the following is/are factor(s) of $(x+1)(4x^2-6x)+2+2x$?
 - I. 2 II. *x* + 1
 - III. 2x-1
 - IV. 2x + 1
 - A. I and II only
 - B. II and III only
 - C. I, II and III only
 - D. II, III and IV only

17. Let
$$f(x) = 2x^3 + kx^2 - 22x - 15$$
. If $f(-1) = 0$, then $f(x) =$

- A. (x+1)(x+5)(2x+3). B. (x+1)(x+5)(2x-3). C. (x+1)(x-5)(2x+3).
- D. (x-1)(x-5)(2x-3).
- 18. The graph of $y = x^2 6x + (k 2)$ has no
- intersections with the *x*-axis. Find the range of values of k.
 - A. k > 9B. k < 9C. k > 11D. k < 11

Section B

19. In the figure, the quadratic graph $y = -(x-2)^2 + 4$ with vertex *B* cuts the *x*-axis at point *A* and the origin *O*. The area of $\triangle OAB$ is

- A. 4 sq. units.
- B. 8 sq. units.

C. 12 sq. units.

- D. 16 sq. units.
- 20. In the figure, the total surface area of the cuboid is 102 cm^2 . Find the volume of the cuboid.

- A. 67.5 cm^3
- B. 80 cm^3
- C. 92.5 cm³
- D. 102 cm^3

21.
$$\frac{1}{3-\sqrt{5}} - \frac{1}{3+\sqrt{5}} =$$

A. $-\frac{\sqrt{5}}{4}$.
B. $-\frac{4}{5}$.
C. $\frac{3}{5}$.
D. $\frac{\sqrt{5}}{2}$.

- 22. Form a quadratic equation in x whose roots are $2 + \sqrt{5}$ and $2 \sqrt{5}$.
 - A. $x^{2} 4x 1 = 0$ B. $x^{2} + 4x - 1 = 0$ C. $x^{2} - 4x + 1 = 0$ D. $x^{2} + 4x + 1 = 0$

23. If
$$\alpha \neq \beta$$
 and $\begin{cases} \alpha^2 = 2\alpha + 5\\ \beta^2 = 2\beta + 5 \end{cases}$, then
 $\frac{1}{\alpha} + \frac{1}{\beta} =$
A. $\frac{2}{5}$.
B. $\frac{5}{2}$.
C. $-\frac{5}{2}$.
D. $-\frac{2}{5}$.

24.
$$\frac{2}{x^{2}+2x} - \frac{1}{x^{2}+x} =$$
A.
$$\frac{1}{x(x-1)}$$
B.
$$\frac{2}{x(x+1)}$$
C.
$$\frac{1}{(x+1)(x+2)}$$
D.
$$-\frac{1}{x(x+1)(x+2)}$$

- 25. It is given that $f(x) = 4x^2 4x + 13$. Which of the following must be true?
 - I. The minimum value of f(x) is 12.
 - II. The coordinates of the vertex of the graph of y = f(x) are $\left(\frac{1}{2}, 12\right)$.
 - III. The axis of symmetry of the graph of y = f(x) is $x = -\frac{1}{2}$.
 - A. I and II only
 - B. I and III only
 - C. II and III only
 - D. I, II and III
- 26. Find the H.C.F. and L.C.M. of $8y^3z$, $16x^3yz^2$ and $32xyz^4$.

	<u>H.C.F.</u>	<u>L.C.M.</u>
A.	2 <i>yz</i>	$32x^3y^3z^4$
B.	2 <i>xyz</i>	$64xy^3z$
C.	8 <i>yz</i>	$32x^3y^3z^4$
D.	8 <i>xyz</i>	$64xy^3z^2$

27. In the figure, the equations of the straight lines L_1 and L_3 are y = -2 and 2x + y + 6 = 0 respectively. L_1 intersects L_2 and L_3 at *B* and *C* respectively. If the area of ΔABC is 24 square units, find the equation of L_2 .

A. 4x+5y-6=0B. 4x+5y+6=0C. 5x-4y-6=0D. 5x-4y+6=0

END OF PAPER