2020-2021 S4 2nd TERM EXAM-MATH-CP 2

MATHEMATICS Compulsory Part

PAPER 2

$17^{\text {th }}$ June, 2021
10:15 am - 11:15 am (1 hour)

INSTRUCTIONS

1. Read carefully the instructions on the Answer Sheet. After the announcement of the start of the examination, you should insert the information required in the spaces provided.
2. When told to open this book, you should check that all the questions are there. Look for the words 'END OF PAPER' after the last question.
3. All questions carry equal marks.
4. ANSWER ALL QUESTIONS. You should use an HB pencil to mark all your answers on the Answer Sheet, so that wrong marks can be completely erased with a clean rubber. You must mark the answers clearly; otherwise you will lose marks if the answers cannot be captured.
5. You should mark only ONE answer for each question. If you mark more than one answer, you will receive NO MARKS for that question.
6. No marks will be deducted for wrong answers.

There are $\mathbf{2 5}$ questions in Section A and 11 questions in Section B.
The diagrams in this paper are not necessarily drawn to scale.
Choose the best answer for each question.

Section A

1. $0.0023456789=$
A. 0.00235 (correct to 6 decimal places).
B. 0.002345 (correct to 6 decimal places).
C. 0.002346 (correct to 6 significant figures).
D. 0.00234568 (correct to 6 significant figures).
2. $\frac{8^{2 x} \cdot 4^{3 x}}{2^{x} \cdot 16^{2 x}}=$
A. 2^{x}.
B. $2^{2 x}$.
C. $2^{3 x}$.
D. 8 .
3. $\frac{2 a}{a^{2}-4 b^{2}}+\frac{1}{2 b-a}=$
A. $\frac{1}{a+2 b}$.
B. $\frac{2 a-1}{(a+2 b)(a-2 b)}$.
C. $\frac{2 a+1}{(a+2 b)(a-2 b)}$.
D. $\frac{3 a+2 b}{(a+2 b)(a-2 b)}$.
4. If $a: b=1: 2$ and $b: c=1: 3$, then $(a+b):(b+c)=$
A. $5: 8$.
B. $3: 8$.
C. 3:4.
D. $2: 3$.
5. If the roots of the equation $x^{2}+a x+5=0$ are equal, then $a=$
A. ± 20.
B. ± 10.
C. $\pm 4 \sqrt{5}$.
D. $\pm 2 \sqrt{5}$.
6. If $x^{2}+2 a x+7 \equiv(x-1)(b x-3)+4$, then
A. $\quad a=-2, b=-2$.
B. $a=-2, b=1$.
C. $a=-2, b=-1$.
D. $a=1, b=-1$.
7. If $3^{2 x}\left(9^{x}\right)=27$, then $x=$
A. $\frac{1}{2}$.
B. $\frac{1}{3}$.
C. $\frac{2}{3}$.
D. $\frac{3}{4}$.
8. If $f(x)=\frac{x}{1+x}$, find the value of $f(3) \cdot f\left(\frac{1}{2}\right)$.
A. $\frac{9}{4}$
B. $\frac{3}{5}$
C. $\frac{1}{4}$
D. $\frac{1}{12}$
9. A child spent $\frac{1}{10}$ of his saving on a shirt and $\frac{1}{5}$ of his savings on a pair of trousers. He then spent 30% of the rest of his savings on books. What percentage of his saving did he spend altogether?
A. 58%
B. 51%
C. 50.4%
D. 49.6%
10. Set up a quadratic equation in x whose roots are $\frac{1}{k}$ and $\frac{1}{2 k}$.
A. $x^{2}-3 k x+2 k^{2}=0$
B. $x^{2}+3 k x+2 k^{2}=0$
C. $2 k^{2} x^{2}-3 k x+1=0$
D. $2 k^{2} x^{2}+3 k x+1=0$
11. In the figure, $A B C D$ is a square of side $10 \mathrm{~cm} . P D=Q D=x \mathrm{~cm}$. If the area of $\triangle B P Q=42 \mathrm{~cm}^{2}$, find the value(s) of x.

A. 4 or 6
B. 4
C. 6
D. 7
12. Let $f(x)=(x+3)(2 x-5)$. If $f(k)=2 k$, then $k=$
A. -3 .
B. $\pm \sqrt{\frac{15}{8}}$.
C. -3 or $\frac{5}{2}$.
D. $-\frac{5}{2}$ or 3 .
13. Let k be a constant. Solve the equation $(x-k)^{2}=4 k^{2}$.
A. $x=3 k$
B. $x=5 k$
C. $x=-k$ or $x=3 k$
D. $x=-3 k$ or $x=5 k$
14. In the figure, $A C F, B C E$ and $B D F$ are straight lines. Find $x: y$.

A. $24: 11$
B. $12: 11$
C. 6:11
D. $1: 1$
15. When $x^{2009}+x^{2008}+x^{2007}+\cdots+x$ is divided by $x+1$, the remainder is
A. -1 .
B. 0 .
C. 1 .
D. 2009 .
16. If $3^{x}+3^{-x}=4$, then $9^{x}+9^{-x}=$
A. 18 .
B. 16 .
C. 14 .
D. 12 .
17. In the figure, the straight lines $L_{1}: a x-2 y+2 a=0$ and L_{2} are parallel. If $O A=O B$, find the equation of L_{2}.

A. $y=-\frac{a}{2} x+a$
B. $y=-\frac{a}{2} x-\frac{a^{2}}{2}$
C. $y=\frac{a}{2} x+a$
D. $y=\frac{a}{2} x-\frac{a^{2}}{2}$
18. When a polynomial $P(x)$ is divided by $12-8 x$, the remainder is R. Find the remainder when $P(x)$ is divided by $2 x-3$.
A. $2 R$
B. R
C. $\frac{R}{2}$
D. $\frac{R}{4}$
19. In the figure, $O A B C$ is a trapezium. Find the area of trapezium $O A B C$.

A. 27 sq. units
B. 30 sq. units
C. 33 sq. units
D. 36 sq. units
20. In the figure, the straight lines $L_{1}: y=a x+b \quad$ and $\quad L_{2}: y=c x+d$ intersect at a point on the positive x-axis. Which of the following must be true?

A. $a b>0$
B. $\quad c d>0$
C. $a c=b d$
D. $a d=b c$
21. In the figure, $P Q$ and $R S$ are perpendicular chords. O is the centre of the circle and $\angle P O R=150^{\circ}$. $\angle S R Q=$

A. 15°.
B. 18°.
C. 25°.
D. 27°.
22. In the figure, $A B$ is the diameter of the semi-circle with centre O. The length of arc $B Q$ is twice the length of arc $P Q$, $\angle P O Q=$

A. 34°.
B. 37°.
C. 39°.
D. 41°.
23. In the figure, $A B C D$ is a parallelogram. E and F are points lying on $A B$ and $C D$ respectively. $A D$ produced and $E F$ produced meet at G. It is given that $D F: F C=3: 4$ and $A D: D G=1: 1$. If the area of $\triangle D F G$ is $3 \mathrm{~cm}^{2}$, then the area of the parallelogram $A B C D$ is

A. $12 \mathrm{~cm}^{2}$.
B. $14 \mathrm{~cm}^{2}$.
C. $18 \mathrm{~cm}^{2}$.
D. $21 \mathrm{~cm}^{2}$.
24. In the figure, O is the centre of the circle of radius 6 cm . The area of the shaded part is

A. $2 \pi \mathrm{~cm}^{2}$.
B. $4 \pi \mathrm{~cm}^{2}$.
C. $9 \pi \mathrm{~cm}^{2}$.
D. $12 \pi \mathrm{~cm}^{2}$.
25. The figure shows the graph of $y=a x^{2}+b x+c$. The coordinates of its vertex are $(-2,-5)$. Which of the following must be true?

I. The axis of symmetry is $x=-5$.
II. $b<0$
III. $b^{2}>28 a$
A. I only
B. II only
C. III only
D. I and III only

Section B

26. Given that the H.C.F. and L.C.M. of $32 a^{2} b^{3} c^{4}$ and a monomial are $8 b c^{4}$ and $160 a^{2} b^{3} c^{5}$ respectively, find the monomial.
A. $40 b c^{5}$
B. $80 b c^{5}$
C. $40 a b c$
D. $80 a^{2} b^{3} c^{5}$
27. $a^{0} \cdot \sqrt{a^{-1}} \cdot \sqrt[3]{a^{-2}}=$
A. 0 .
B. 1 .
C. $a^{\frac{1}{3}}$.
D. $\frac{1}{a^{\frac{7}{6}}}$.
28. If $\log x^{2}+\log y^{2}=\log z^{2}$, where x, y and z are positive numbers, which of the following must be true?
I. $\quad x^{2} y^{2}=z^{2}$
II. $\log x+\log y=\log z$
III. $x^{2}+y^{2}=z^{2}$.
A. I only
B. II only
C. I and II only
D. I, II and III
29. Given α and β are the roots of the quadratic equation $x^{2}-14 x+k=0$ and $(\alpha+1)(\beta+1)=-7$, then $k=$
A. -22 .
B. -6 .
C. 2 .
D. 6 .
30. If $2=3^{x}$ and $3=2^{y}$, then $x y=$
A. $\frac{2}{3}$.
B. 1 .
C. $\frac{3}{2}$.
D. 2 .
31. Solve the equation $\log _{7}(4 x+5)=0$.
A. $x=-\frac{5}{4}$
B. $x=-1$
C. $x=0$
D. $x=\frac{1}{2}$
32. The graph in the figure shows the linear relation between $\log _{2} y$ and $\log _{2} x$. If $y=k x^{n}$, then $k=$

A. -3 .
B. $-\frac{1}{8}$.
C. $\frac{1}{8}$.
D. 1 .
33. In the figure, the circle with centre O touches the three side of $\triangle A B C$ at P, Q and $R . \angle B=\beta, \angle C=\gamma . \angle R O Q=$

A. $\beta+\gamma$.
B. $(\beta+\gamma)-180^{\circ}$.
C. $90^{\circ}-(\beta+\gamma)$.
D. $180^{\circ}-(\beta+\gamma)$.
34. In the figure, $P Q$ and $R S$ touch the circle at A and C respectively. $\angle A B C=$

A. 90°.
B. 84°.
C. 60°.
D. 48°.
35. The figure shows the graph of $y=2^{x}$ and four curves C_{1}, C_{2}, C_{3} and C_{4}. Which of the curves can be the graph of $y=\left(\frac{2}{3}\right)^{x}$?

A. C_{1}
B. C_{2}
C. C_{3}
D. C_{4}
36. In the figure, $T S, S Q$ and $Q P$ are tangents to the circle at T, R and P respectively. If $T S / / P Q, T S=3$ and $Q P=12$, then the radius of the circle is

A. 12.
B. 9 .
C. 7.5.
D. 6 .
