2020-2021 F.6 MOCK EXAM-MATH-CP 2

Form 6 Mock Examination

MATHEMATICS Compulsory Part PAPER 2

11th January, 2021 11:00 am – 12:15 pm (1 hour 15 minutes)

INSTRUCTIONS

- 1. Read carefully the instructions on the Answer Sheet. After the announcement of the start of the examination, you should insert the information required in the spaces provided.
- 2. When told to open this book, you should check that all the questions are there. Look for the words 'END OF PAPER' after the last question.
- 3. All questions carry equal marks.
- 4. **ANSWER ALL QUESTIONS**. You should use an HB pencil to mark all your answers on the Answer Sheet, so that wrong marks can be completely erased with a clean rubber. You must mark the answers clearly; otherwise you will lose marks if the answers cannot be captured.
- 5. You should mark only **ONE** answer for each question. If you mark more than one answer, you will receive **NO MARKS** for that question.
- 6. No marks will be deducted for wrong answers.

There are 30 questions in Section A and 15 questions in Section B.

The diagrams in this paper are not necessarily drawn to scale.

Choose the best answer for each question.

Section A

1.
$$2a^2 - 5ab + 3b^2 + a - b =$$

A.
$$(a+b)(2a-3b+1)$$
.

B.
$$(a+b)(2a-3b-1)$$
.

C.
$$(a-b)(2a-3b+1)$$
.

D.
$$(a-b)(2a-3b-1)$$
.

2.
$$\frac{3^m \cdot 9^{2m}}{9} =$$

A.
$$3^{3m-2}$$

B.
$$3^{5m-2}$$
.

C.
$$9^{3m-2}$$
.

D.
$$9^{5m-2}$$
.

3. If
$$\frac{x}{y} = \frac{2z-1}{z+2}$$
, then $z = \frac{1}{z+2}$

$$A. \quad \frac{2x+y}{2y-x}$$

B.
$$\frac{x+2y}{2y-x}$$

C.
$$xy+1$$
.

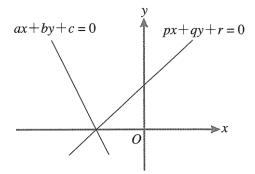
D.
$$x + y + 1$$
.

4. If
$$x^2 - 4ax + 2 = (x - 2a)^2 + 2b$$
, then $b =$

B.
$$-2a^2$$
.

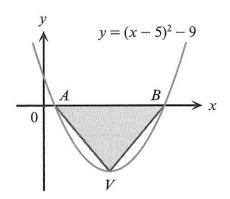
C.
$$2a^2 - 1$$
.

D.
$$1-2a^2$$
.


5. Let *k* be a constant. If
$$f(x) = 3x^2 - 7x + k$$
,
then $f(1) - f(-1) =$

6. If
$$x^{2020} + 2021x + k$$
 is divisible by $x+1$, then $k =$

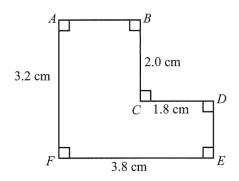
A.
$$-2020$$
.


7. The marked price of a dress is \$600. If the dress is sold at a discount of 15%, the profit percentage is 20%. Find the cost price of the dress.

8. In the figure, two straight lines intersect at a point on the negative *x*-axis. Which of the following must be true?

- I. bc > 0
- II. qr > 0
- III. ar = cp
- IV. br = cq
- A. I and III only
- B. I and IV only
- C. II and III only
- D. II and IV only
- 9. Let a be a constant. Solve the equation $(2x+a)^2 = (x-a)^2.$
 - A. x = 0
 - B. x = -2a
 - C. x = 0 or x = -a
 - D. x = 0 or x = -2a
- 10. Red beans and yellow beans are mixed in the ratio r:s by weight. The costs of red beans and yellow beans are \$3/kg and \$7/kg respectively. If the cost of the mixture is \$4/kg, then r:s is
 - A. 3:1.
 - B. 5:2.
 - C. 7:3.
 - D. 7:4.

- 11. It is given that *a* varies directly as the square root of *b* and inversely as the square of *c*. Which of the following is a/are constant(s)?
 - I. $\frac{ac^2}{\sqrt{b}}$
 - II. $\frac{a\sqrt{b}}{c^2}$
 - III. $\frac{a^2c^4}{b}$
 - A. I only
 - B. II only
 - C. I and III only
 - D. I, II and III
- 12. The figure shows the graph of $y = (x-5)^2 9$ which cuts the x-axis at A and B. V is the vertex of the graph. The area of ΔVAB is

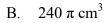


- A. 18 square units.
- B. 20 square units.
- C. 27 square units.
- D. 30 square units.

13. The solution of 4-4x < 8 or $\frac{4x-6}{7} > 2$

is

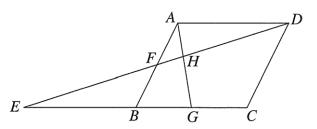
- A. x < -1.
- B. x > -1.
- C. x > 5.
- D. x < -1 or x > 5.
- 14. In the figure, ABCDEF is a hexagon, where all the measurements are correct to the nearest 0.1 cm. If the actual area of the hexagon is $x \text{ cm}^2$, find the range of values of x.


- A. $5.38 \le x < 9.64$
- B. $8.02 \le x < 9.1$
- C. $8.24 \le x < 8.88$
- D. $8.4 \le x < 8.72$
- 15. The length of a rectangle is increased by 25%. If the area remains unchanged, find the percentage change in width of the rectangle.
 - A. Decreased by 80%
 - B. Decreased by 75%
 - C. Decreased by 40%
 - D. Decreased by 20%

16. For $0^{\circ} \le \theta \le 360^{\circ}$, the least value of

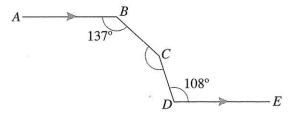
$$\frac{5}{3+\sin\theta}$$
 is

- A. $\frac{5}{2}$.
- B. $\frac{5}{3}$.
- C. $\frac{5}{4}$.
- D. 1.
- 17. The base radius of a right circular cone is 8 cm. The figure shows a frustum which is made by cutting off the upper part of the circular cone with base radius 4 cm. The height of the frustum is 9 cm. Find the volume of frustum.

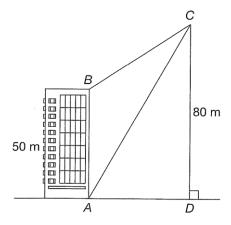


C. $288 \, \pi \, \text{cm}^3$

D. $336 \, \pi \, \text{cm}^3$

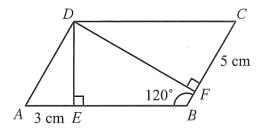


18. In the figure, ABCD is a parallelogram. F and G are the mid-points of AB and BC respectively. DF produced and CB produced meet at E. If AG and DE meet at H, then AH: GH =

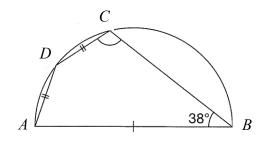


- A. 1:2.
- B. 2:3.
- C. 3:4.
- D. 9:10.

19. In the figure, AB // DE, $\angle ABC = 137^{\circ}$ and $\angle CDE = 108^{\circ}$. Find $\angle BCD$.

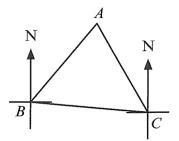


- A. 115°
- B. 125°
- C. 151°
- D. 161°
- **20.** In the figure, *AB* is a building 50 m high and *C* is a balloon 80 m above the horizontal ground. The angle of depression of *A* from *C* is 60°. Find the angle of elevation of *C* from *B*, correct to the nearest 0.1°.

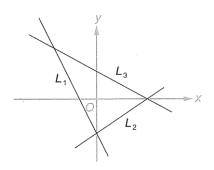


- A. 12.2°
- B. 30.0°
- C. 33.0°
- D. 47.3°

21. In the figure, ABCD is a parallelogram. AE = 3 cm, CF = 5 cm and $\angle ABC = 120^{\circ}$. $DE \perp AB$ and $DF \perp BC$. Find the area of ABCD.



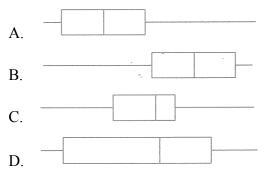
- A. $30\sqrt{3}$ cm²
- B. $45\sqrt{3}$ cm²
- C. $60\sqrt{3} \text{ cm}^2$
- D. $75\sqrt{3}$ cm²
- 22. In the figure, ABCD is a semi-circle, AD = CD and $\angle ABC = 38^{\circ}$. Find $\angle BCD$.



- A. 104°
- B. 109°
- C. 128°
- D. 142°

23. In the figure, the true bearing of A from B is 040° and the true bearing of A from C is 330°. If B and C are equidistant from A, then the compass bearing of C from B is

- A. N 85° W.
- B. S 5° E.
- C. S 85° E.
- D. S 85° W.
- **24.** The figure shows 3 lines L_1 , L_2 and L_3 whose slopes are m_1 , m_2 and m_3 respectively. Which of the following must be true?



- A. $m_1 < m_2 < m_3$
- B. $m_1 < m_3 < m_2$
- C. $m_3 < m_2 < m_1$
- D. $m_3 < m_1 < m_2$

- **25.** A moving point P(x, y) is always equidistant from the lines $L_1: y = x + 5$ and $L_2: y = x 3$. Find the equation of the locus of P.
 - A. y = x + 1
 - B. y = x + 2
 - C. y = -x + 1
 - D. y = -x + 2
- 26. If the straight line 2x-5y+8=0 and ax+by-16=0 are perpendicular to each other and intersect at a point on the *y*-axis, then a=
 - A. -5.
 - B. -2.
 - C. 10.
 - D. 25.
- 27. The equation of a circle is $x^2 + y^2 2x + 8y 8 = 0$. A(-2, 0) and B(4, -6) are two points on the rectangular coordinate plane. Which of the following is/are true?
 - I. The centre of the circle lies in quadrantII of the rectangular coordinate plane.
 - II. The mid-point of AB lies inside the circle.
 - III. If D is the centre of the circle, AD and BD are perpendicular to each other.
 - A. I only
 - B. II only
 - C. I and II only
 - D. II and III only

- 28. The scores of Tom in 5 quizzes are 7, 3, 4, 7 and 4 respectively. If two of these scores are selected at random, what is the probability that the sum is greater than 10?
 - A. $\frac{1}{2}$
 - B. $\frac{1}{3}$
 - C. $\frac{2}{3}$
 - D. $\frac{1}{6}$
- **29.** The stem-and-leaf diagram shows the distribution of the ages of the members in a club.

Which of the following box-and-whisker diagram may represent the distribution of their ages?

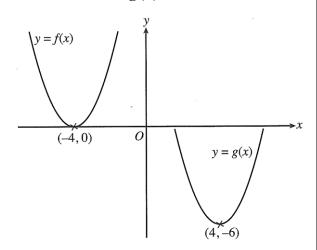
30. Consider the following integers:

It is known that a, b and c are integers with $1 \le a \le b \le c$. If the mean and the range of the above data are 7 and 20 respectively, which of the following is/are true?

I.
$$c \le 20$$

II.
$$b=2$$

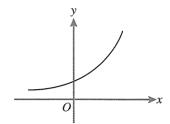
III.
$$a > 1$$

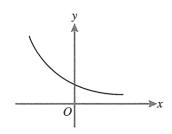

- A. II only
- B. III only
- C. I and II only
- D. I and III only

Section B

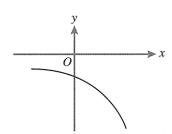
31.
$$2^{12} + 2^9 + 2^8 + 101 =$$

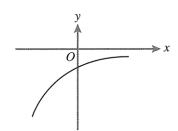
- A. 100110000101₂.
- B. 100111100101₂.
- C. 1001100000101₂.
- D. 1001101100101₂.

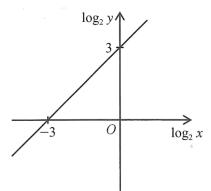

32. In the figure, the graph of y = g(x) is obtained by transforming the graph of y = f(x). Which of the following may be the function of g(x)?


- I. f(x-8)-6
- II. f(x+8)-6
- III. f(-x) 6
- A. I only
- B. II only
- C. I and III only
- D. II and III only

33. Which of the following may represent the graph of $y = -2^{-x}$


A.


B.


C.

D.

34. The graph in the figure shows the linear relation between $\log_2 x$ and $\log_2 y$. Which of the following must be true?

A.
$$8x - y = 0$$

B.
$$x - y = -8$$

C.
$$8x^3 - y^3 = 0$$

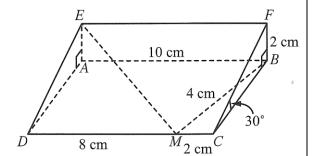
D.
$$x^3 - y^3 = -8$$

35. Let a_n be the *n*th term of a geometric sequence. If $a_6 = \frac{2}{9}$ and $a_9 = \frac{16}{243}$, which of the following is/are true?

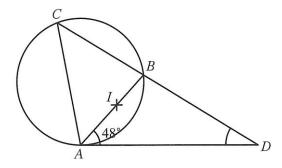
I.
$$a_2 < 1$$

II.
$$a_3 + a_4 + a_5 + a_6 + a_7 < 2$$

- III. The sum to infinity of $a_1, a_2, a_3,...$ is greater than 5.
- A. II only
- B. I and III only
- C. II and III only
- D. I, II and III


36. Consider the following system of inequalities:

$$\begin{cases} x - 2y \ge -8\\ 3x + 2y \le 16\\ 2x + y \le 10\\ x \ge 0\\ y \ge 0 \end{cases}$$


Let R be the region which represents the solution of the above system of inequalities. If (x, y) is a point lying in R, find the greatest value of P = 3x + 3y + 4.

37. Let $z = \frac{4i^6 + 2ai}{1 - i}$, where a is a real number. If z is a purely imaginary number, then a =

38. In the figure, ABCDEF is a right triangular prism. It is given that AB = 10 cm, FB = 2 cm and $\angle FCB = 30^{\circ}$. M is a point on DC such that DM = 8 cm, BM = 4 cm and MC = 2 cm. Find $\sin \angle EMB$.

- A. $-\frac{1}{4\sqrt{5}}$
- B. $\frac{2}{\sqrt{26}}$
- C. $\sqrt{\frac{10}{13}}$
- D. $\sqrt{\frac{79}{80}}$
- 39. In the figure, AD is the tangent to the circle at A. CBD is a straight line. I is the in-centre of $\triangle ACD$ and I lies on AB. If $\angle BAD = 48^{\circ}$, then $\angle ADC =$

- $A. 36^{\circ}$.
- B. 38°.
- C. 42°.
- D. 44°.

40. The coordinates of two vertices of a triangle are (-9, -2) and (0, k). If the coordinates of the circumcentre of the triangle are (-4, 2), then k =

A.
$$-2$$
 or 5.

B.
$$-3$$
 or 7.

41. Find the x-coordinate of the mid-point of the intersecting points of the circle $x^2 + y^2 - 6x - 4y - 12 = 0$ and the straight line x + 2y - 2k = 0.

A.
$$\frac{2k-1}{5}$$

$$B. \quad \frac{2k+4}{5}$$

$$C. \quad \frac{2k+7}{5}$$

D.
$$\frac{2k+8}{5}$$

- 42. There are 12 boys and 8 girls in a class.

 2 boys and 4 girls are selected randomly from the class and arranged to form a queue. If no boys are next to each other, how many different queues can be formed?
 - A. 221 760
 - B. 1330560
 - C. 2217600
 - D. 3 326 400

- 43. A teacher intends to buy 4 reference books from 14 reference books in which 9 are published by company *A* and 5 are published by company *B*. If the teacher selects the books at random, find the probability that the teacher buys at least 2 books published by company *A*.
 - A. $\frac{6}{11}$
 - B. $\frac{18}{143}$
 - C. $\frac{486}{1001}$
 - D. $\frac{906}{1001}$
- **44.** In an examination, Amy gets 50 marks and her standard score is −2 while Ben gets 95 marks and his standard score is 3. Find the mean of the examination scores.
 - A. 9 marks
 - B. 60 marks
 - C. 68 marks
 - D. 74 marks

45. The mean, the range and the variance of a group of numbers $\{x_1, x_2, x_3, x_4, x_5, x_6, x_7\}$ are 50, 12 and 10 respectively. Let m, r and v be the mean, the range and the variance of the group of numbers $\{2x_1+4, 2x_2+4, 2x_3+4, 2x_4+4, 2x_5+4, 2x_6+4, 2x_7+4\}$ respectively.

Which of the following are true?

- I. m = 104
- II. r = 24
- III. v = 40
- A. I and II only
- B. I and III only
- C. II and III only
- D. I, II and III