
## 2020-2021 F.5 2nd TERM EXAM - MATH - CP 2



2020 – 2021 Form 5 Second Term Examination

## **MATHEMATICS Compulsory Part**

# PAPER 2

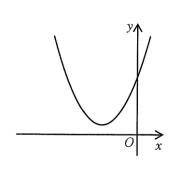
18<sup>th</sup> June, 2021. (Friday) 11:00 am – 12:15 pm (1 hour 15 minutes)

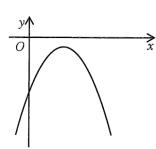
### **INSTRUCTIONS**

- 1. Read carefully the instructions on the Answer Sheet. After the announcement of the start of the examination, you should insert the information required in the spaces provided.
- 2. When told to open this book, you should check that all the questions are there. Look for the words 'END OF PAPER' after the last question.
- 3. All questions carry equal marks.
- 4. **ANSWER ALL QUESTIONS**. You should use an HB pencil to mark all your answers on the Answer Sheet, so that wrong marks can be completely erased with a clean rubber. You must mark the answers clearly; otherwise you will lose marks if the answers cannot be captured.
- 5. You should mark only **ONE** answer for each question. If you mark more than one answer, you will receive **NO MARKS** for that question.
- 6. No marks will be deducted for wrong answers.

There are 30 questions in Section A and 15 questions in Section B. The diagrams in this paper are not necessarily drawn to scale. Choose the best answer for each question.

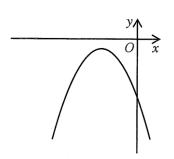
#### Section A


- 1.  $ab-abc+c-c^2 =$ 
  - A. (ab+c)(1-c).
  - **B.** (ab+c)(1+c).
  - C. (ab-c)(1-c). D. (ab-c)(1+c).

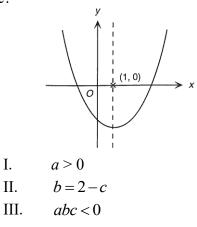

**2.**  $27^{333} \cdot 4^{999} =$ 

- **A.** 12<sup>999</sup>.
- **B.**  $12^{1332}$ .
- **C.** 108<sup>999</sup>.
- **D.**  $108^{1332}$ .
- 3. If a and b are constants such that  $5x^2 6x + a \equiv 5(x-2)^2 bx$ , then b =
  - **A.** − 24.
  - **B.** 20.
  - **C.** 14.
  - **D.** 20.
- **4.** The marked price of a can of Potato Cat Food is 40% above the cost. If the can is sold at a 20% discount on the marked price, then the profit percentage is
  - A. 8%.
  - **B.** 12%.
  - **C.** 20%.
  - **D.** 88%.

- 5. If k is a constant such that the quadratic equation  $x^2 + kx + (5-2k) = 0$  has equal roots, then k =
  - A. 1.
    B. 5.
    C. -10 or 2.
    D. -1 or 20.
- 6. Let *a* be a constant. Solve the equation x(x-1) = a(a-1).
  - A. x = a. B. x = -a. C. x = a or x = 1 - a. D. x = a or x = a - 1.
- 7. Let  $f(x) = x^2 kx + 5$ , where k is a constant. Then f(3) f(-3) =
  - **A.** 0.
  - B. 28.C. 6k.
  - C. UK.
  - **D.** -6k.
- 8. Let  $f(x) = ax^{16} bx + c$ , where a, b and c are constants. It is given that f(x) is divisible by x+1. Find the remainder when f(x) is divided by x-1.
  - **A.** -2b **B.** 2b **C.** 2a-2b**D.** -2a-2b


- 9. If k < 0, which of the following may represent the graph of  $y = k(x+k)^2 + k$ ?
  - A.  $y_{1}$  0 xB.








С.



10. The figure shows the graph of y = a(x-b)(x-c), where b < c. Given that the axis of symmetry of the graph cuts the *x*-axis at (1, 0), which of the following are true?



- A. I and II only
- **B.** I and III only
- C. II and III only
- **D.** I, II and III
- 11. In the figure, the solid consists of a hemisphere of radius 2 cm joined to the bottom of a right circular cone of height 5 cm and base radius 2 cm. Find the volume of the solid.

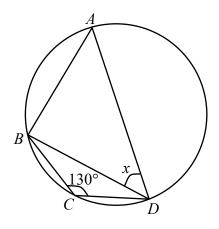
A. 
$$10\pi \text{ cm}^3$$
  
B.  $12\pi \text{ cm}^3$   
C.  $\frac{32\pi}{3} \text{ cm}^3$   
D.  $\frac{76\pi}{3} \text{ cm}^3$ 

**12.** The solution of  $6-5x < \frac{2+x}{3}$  and

$$2x-1 \ge 0$$
 is

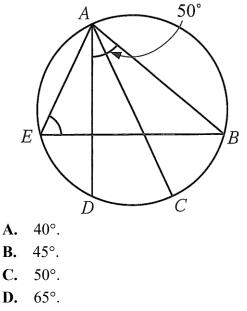
x

A.


$$\geq \frac{1}{2}$$
.

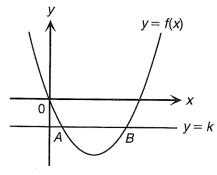
**B.** 
$$x > 1$$
.  
**C.**  $x \le \frac{1}{2}$  or  $x > 1$   
**D.**  $\frac{1}{2} \le x < 1$ .

- **13.** If a > 0 > b > c, which of the following are true?
  - I. a+b > a+cII. ab > acIII.  $b^2 > c^2$
  - A. I and II only
  - **B.** I and III only
  - C. II and III only
  - **D.** I, II and III
- 14. A(0, 4) and B(2, -2) are two points. It is given that the *y*-intercept of *L* is  $-\frac{2}{5}$  and *L* is parallel to *AB*. Find the equation of *L*.

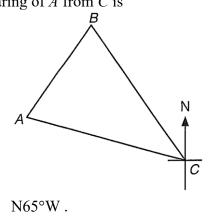

A. 
$$y = \frac{1}{3}x - \frac{2}{5}$$
  
B.  $y = -\frac{1}{3}x - \frac{2}{5}$   
C.  $y = 3x - \frac{2}{5}$   
D.  $y = -3x - \frac{2}{5}$ 

**15.** In the figure, *AD* is a diameter of the circle ABCD.  $\angle BCD = 130^{\circ}$ . Find *x*.




- **A.** 40°
- **B.** 50°
- **C.** 60°
- **D.** 65°

**16.** In the figure, AC is a diameter of the circle ABCDE. If  $\angle BAD = 50^{\circ}$  and BC = CD, then  $\angle AEB =$ 




- 17. It is given that z is partly constant and partly varies as  $x^2$ . When x = 0, z = 5; when x = 2, z = 9. Find z when x = 3.
  - **A.** 8
  - **B.** 14
  - **C.** 15
  - **D.** 33
- 18. It is given that y varies directly as x and inversely as  $z^2$ . If x and z are both increased by 25%, then y
  - A. is increased by 20%.
  - **B.** is increased by 25%.
  - **C.** is decreased by 20%.
  - **D.** is decreased by 25%.

19. In the figure, the quadratic graph of y = f(x) intersects the line y = k at A and B. If the roots of the equation f(x) = k are 2 and 6, which of the following are true?

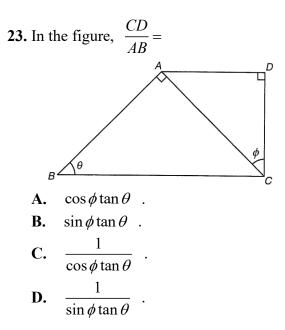


- I. The coordinates of B are (6, k).
- II. The solution of the inequality  $f(x) \le 0$  is  $2 \le x \le 6$ .
- III. The equation of the axis of symmetry of y = f(x) is x = 4.
- A. I and II only
- **B.** I and III only
- C. II and III only
- **D.** I, II and III
- **20.** In the figure, AC = BC. If B is at the northeast of A and  $\angle ACB = 40^\circ$ , then the bearing of A from C is



**B.** N40°W.

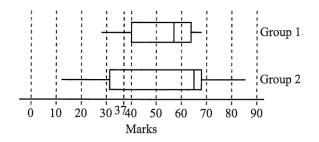
A.


- **C.** S65°E.
- **D.** S40°E.

21. 
$$\frac{[1+\sin(90^\circ-\theta)][1-\cos(360^\circ-\theta)]}{\sin(270^\circ+\theta)} =$$

- A.  $\sin\theta$ .
- **B.**  $-\sin\theta$ .
- **C.**  $\sin\theta\tan\theta$ .
- **D.**  $-\sin\theta\tan\theta$ .

**22.** The greatest value of 
$$\frac{6 - \cos \theta}{7 + \cos \theta}$$
 is


**A.** 
$$\frac{5}{8}$$
 .  
**B.**  $\frac{6}{7}$  .  
**C.** 1.  
**D.**  $\frac{7}{6}$ .



- **24.** P(2, 13) and Q(-3, 4) are two points. If *M* is a moving point such that the perpendicular distance from *M* to the straight line *PQ* is always 5 units. The locus of *M* is
  - A. the perpendicular bisector of PQ.
  - **B.** a circle.
  - C. a pair of parallel lines.
  - **D.** the angle bisector of  $\angle POQ$ .

- 25. Which of the following statements about the circle  $2x^2 + 2y^2 + 12x - 8y - 6 = 0$ must be true?
  - I. The centre of the circle is (-6, 4).
  - II. The radius of the circle is 4.
  - III. The origin lies inside the circle.
  - A. I and II only
  - **B.** I and III only
  - C. II and III only
  - **D.** I, II and III
- 26. Find the area of the circle  $x^2 + y^2 + x - 3y - \frac{7}{2} = 0$ .
  - A.  $2\pi$  sq. units
  - **B.**  $6\pi$  sq. units
  - C.  $8\pi$  sq. units
  - **D.**  $\frac{15}{2}\pi$  sq. units
- 27. A box contains seven balls marked with the numbers -3, -2, -1, 1, 2, 3 and 4 respectively. If two balls are drawn randomly from the box at the same time, find the probability that the product of the numbers on the balls drawn is positive.
  - **A.**  $\frac{5}{42}$ . **B.**  $\frac{1}{6}$ . **C.**  $\frac{2}{7}$ . **D.**  $\frac{3}{7}$ .

**28.** The two box-and-whisker diagrams below show the distribution of the marks that two groups of students got in a test. Which of the following must be true?



- Inter-quartile range of the marks of group 1 < Inter-quartile range of the marks of group 2.
- II. Median of the marks of group 1 < Median of the marks of group 2.</li>
- III. If the passing mark is 37, then the number of group 1 students who passed the test is more than that of group 2.
- A. I only
- **B.** I and II only
- C. II and III only
- **D.** I, II and III

#### **29.** Consider the following integers:

1 2 3 3 3 *m* 5 6 7 8 *n* 

It is known that  $3 \le m \le 5$  and  $n \ge 8$ . Let p, q and r be the mean, the median and the mode of the above integers respectively. Which of the following must be true?

- I. p > qII. p > rIII. q > r
- **A.** II only
- **B.** III only
- **C.** I and III only
- **D.** II and III only
- **30.** The stem and leaf diagram below shows the distribution of the heights (in cm) of the members of a football team.

| Stem (tens) | Leaf (units) |   |   |   |
|-------------|--------------|---|---|---|
| 15          | а            | 4 | 5 |   |
| 16          | 3            | 6 | 7 | 7 |
| 17          | 0            | 0 | 1 | 2 |
| 18          | 6            | 7 | b |   |

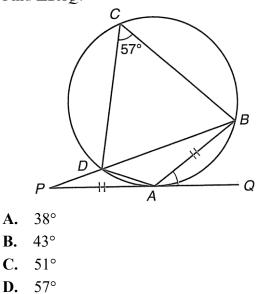
If the range of the above distribution is at most 35, which of the following must be true?

- I.  $0 \le a \le 3$ II.  $7 \le b \le 9$
- III.  $5 \le b a \le 7$
- A. I only
- **B.** II only
- C. I and III only
- **D.** II and III only

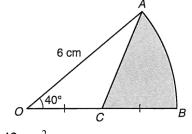
#### Section **B**

31. 
$$\frac{x+1}{x^2-1} + \frac{4}{4-x} =$$
  
A.  $\frac{3x}{(x-1)(x-4)}$   
B.  $\frac{3x+2}{(x-1)(x-4)}$   
C.  $-\frac{3x}{(x-1)(x-4)}$   
D.  $-\frac{3x+2}{(x-1)(x-4)}$ 

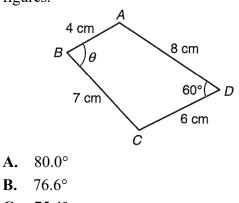
- **32.** If  $\beta$  is a real number, then  $3i(5 \beta i^3) =$ 
  - **A.**  $-3\beta 15i$  . **B.**  $-3\beta + 15i$  . **C.**  $3\beta - 15i$  . **D.**  $3\beta + 15i$  .


**33.** Let k be a non-zero constant. If  $\begin{cases} 2\alpha^2 = 6\alpha - k \\ 2\beta^2 = 6\beta - k \end{cases}, \text{ where } \alpha \neq \beta \text{ , then } \alpha^2 + 3\beta = \end{cases}$  **A.**  $-9 + \frac{k}{2}$ . **B.**  $-9 - \frac{k}{2}$ .

**C.** 
$$9 + \frac{k}{2}$$
.  
**D.**  $9 - \frac{k}{2}$ .

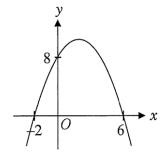

**34.** Solve  $3\cos^2 \theta = 5\cos\theta + 2$  for  $0^\circ \le \theta \le 360^\circ$ . (Give your answers correct to 3 significant figures.)

A. 109° or 251°
B. 70.5° or 290°
C. 109° or 290°
D. 70.5° or 109°

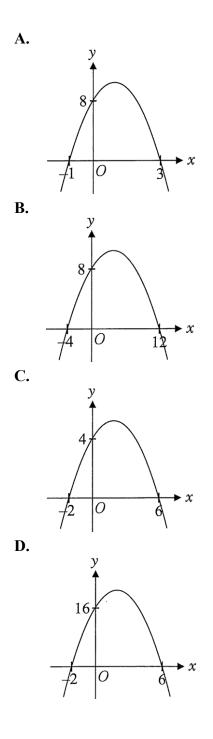

**35.** In the figure, PQ is the tangent to the circle at A. PDB is a straight line and AP = AB. Find  $\angle BAQ$ .



**36.** In the figure, OAB is a sector and OC = CB. Find the area of the shaded region, correct to 2 decimal place.

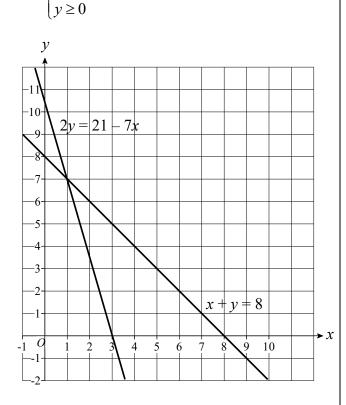



- A.  $6.42 \text{ cm}^2$
- **B.**  $6.78 \text{ cm}^2$
- C.  $7.24 \text{ cm}^2$
- **D.**  $7.56 \text{ cm}^2$
- **37.** Find  $\theta$  in the figure, correct to 3 significant figures.

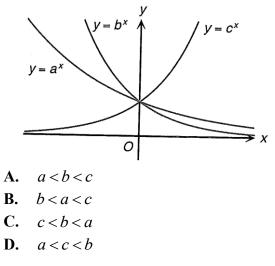



- **C.** 75.4°
- **D.** 71.1°

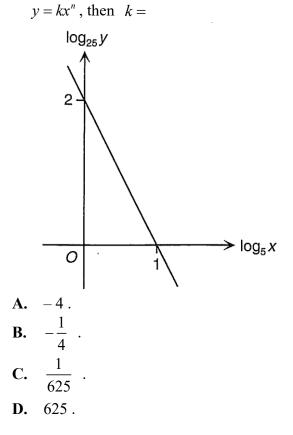
**38.** The following figure shows the graph of y = f(x).




If g(x) = f(2x), which of the following may represent the graph of y = g(x)?




**39.** Find the maximum value of P = 5x - 2y subject to the following constraints:


 $\begin{cases} x + y \le 8\\ 2y \ge 21 - 7x\\ 0 \le x \le 6 \end{cases}$ 



- **A.** 5
- **B.** 19
- **C.** 26
- **D.** 30
- **40.** The figure shows the graphs of  $y = a^x$ ,  $y = b^x$  and  $y = c^x$ , where *a*, *b* and *c* are positive constants. Which of the following must be true?



**41.** The graph of the figure shows the linear relation between  $\log_{25} y$  and  $\log_5 x$ . If



- **42.** A queue is formed by 8 boys and 3 girls. If no girls are next to each other, how many different queues can be formed?
  - A. 120 960
  - **B.** 1 088 640
  - **C.** 20 321 280
  - **D.** 29 393 280

- **43.** A box contains 4 green balls and 8 red balls. If 4 balls are randomly drawn from the box at the same time, find the probability that at least 3 red balls are drawn.
  - **A.**  $\frac{1}{15}$
  - **B.**  $\frac{14}{55}$
  - C.  $\frac{98}{165}$
  - **D.**  $\frac{224}{495}$
- 44. Find the *x*-coordinate of the mid-point of the intersecting points of the circle  $x^2 + y^2 - 6x - 4y - 12 = 0$  and the straight line x + 2y - 2k = 0.

A. 
$$\frac{2k-1}{5}$$
  
B.  $\frac{2k+4}{5}$   
C.  $\frac{2k+7}{5}$   
D.  $\frac{2k+8}{5}$ 

- 45. If the variance of the five numbers a, b, c, dand e is 4, then the variance of the five numbers 14 - 3a, 14 - 3b, 14 - 3c, 14 - 3dand 14 - 3e is
  - **A.** 2.
  - **B.** 12.
  - **C.** 36.
  - **D.** 50.

#### **END OF PAPER**