2019-2020 S4 2nd TERM EXAM-MATH-CP 2

2019 – 2020 Form 4 Second Term Examination

MATHEMATICS Compulsory Part

PAPER 2

24th June, 2020. (Wednesday) 10:15 am – 11:15 am (1 hour)

INSTRUCTIONS

- 1. Read carefully the instructions on the Answer Sheet. After the announcement of the start of the examination, you should insert the information required in the spaces provided.
- 2. When told to open this book, you should check that all the questions are there. Look for the words 'END OF PAPER' after the last question.
- 3. All questions carry equal marks.
- 4. **ANSWER ALL QUESTIONS**. You should use an HB pencil to mark all your answers on the Answer Sheet, so that wrong marks can be completely erased with a clean rubber. You must mark the answers clearly; otherwise you will lose marks if the answers cannot be captured.
- 5. You should mark only **ONE** answer for each question. If you mark more than one answer, you will receive **NO MARKS** for that question.
- 6. No marks will be deducted for wrong answers.

There are 24 questions in Section A and 12 questions in Section B. The diagrams in this paper are not necessarily drawn to scale. Choose the best answer for each question.

Section A

- **1.** 0.085 274 63 =
 - A. 0.08 (correct to 2 decimal places).
 - **B.** 0.085 (correct to 3 significant figures).
 - C. 0.0853 (correct to 4 decimal places).
 - **D.** 0.085 27 (correct to 5 significant figures).

2.
$$au + bu - cu - av - bv + cv =$$

A. $(a + b + c)(u + v)$.
B. $(a - b + c)(v - u)$.
C. $(a - b - c)(u + v)$.
D. $(a + b - c)(u - v)$.

3. If
$$s = \frac{2u+3v}{3u-4v}$$
, then $u =$
A. $\frac{2s+3v}{3s-4v}$.
B. $\frac{4s-3v}{2s+3v}$.
C. $\frac{(4s+3)v}{3s-2}$.
D. $\frac{(4s+3)v}{2-3s}$.

- **4.** A sum of \$4000 is deposited in a bank at an interest rate 4% p.a. for 5 years, compounded quarterly. Find the interest correct to the nearest dollar.
 - **A.** \$800
 - **B.** \$867
 - **C.** \$876
 - **D.** \$881

- 5. Which of the following numbers is a rational number?
 - I. 0.125 II. $\sqrt{4}$ III. $2\frac{5}{16}$ **A.** I only
 - **B.** I and II only
 - **C.** I and III only
 - **D.** I, II and III

6.
$$\frac{\sqrt{121a}}{\sqrt{242}} =$$
A. $\sqrt{2a}$.
B. $2\sqrt{2a}$.
C. $\frac{\sqrt{2a}}{2}$.
D. $\frac{a}{2}$.

- 7. Let k be a constant. If the quadratic equation x² + kx + 4 = x has equal roots, then k =
 A. -3 or 5.
 B. -5 or 3.
 C. -3 or -5.
 D. 3 or 5.
- 8. If $x^2 \sqrt{5}x 5 = 0$, then x =A. $\sqrt{5}$. B. 0 or $\sqrt{5}$. C. $\frac{5 \pm 2\sqrt{5}}{2}$. D. $\frac{\sqrt{5} \pm 5}{2}$.

- 9. If f(x) = 2x 3, f(2x + 3) =A. 4x + 3. B. 4x - 3. C. 4x + 6.
 - **D.** 4x 6.
- 10. Which of the following is a function of x?
 - I. $y = \frac{1}{\sqrt{x^2 + 3}}$ II. $y = x^3 - \frac{1}{x^2}$, where $x \neq 0$ III. $y^2 = 1 - x$, where $x \le 1$
 - A. I and II only
 - **B.** I and III only
 - C. II and III only
 - **D.** I, II and III
- 11. Consider the function $f(x) = 2 x^2$. Which of the following may be a range of f(x)?
 - A. All real numbers smaller than 2
 - **B.** All real numbers smaller than or equal to 2
 - C. All real numbers greater than 2
 - **D.** All real numbers greater than or equal to 0
- 12. Which of the following about the graph of $y = 3(x-2)^2 + 5$ must be true?
 - A. The *y*-intercept is 5.
 - **B.** The graph has no *x*-intercepts.
 - C. The coordinates of the vertex are (2, -5).
 - **D.** The equation of the axis of symmetry is x = -2.

- **13.** When a polynomial f(x) is divided by $4x^2-5x+1$, the quotient and the remainder are 4x+3 and 2-6x respectively. Find f(x). **A.** $16x^3-8x^2-17x-5$ **B.** $16x^3-8x^2-17x+5$ **C.** $16x^3-20x^2-17x+2$ **D.** $16x^3-17x^2-17x+5$
- 14. Let $p(x) = mx^3 x^2 + n$, where *m* and *n* are constants. If p(x) is divisible by x 2, find the remainder when p(x) is divided by x + 1.
 - **A.** -9m + 3 **B.** -8m + 4**C.** -7m + 6
 - **D.** –4*m*
- 15. The straight lines L and 4x + 3y 8 = 0intersect at a point on the *x*-axis. If the *y*-intercept of L is 3, then the equation of L is
 - **A.** 2x 3y + 6 = 0.
 - **B.** 2x + 3y 6 = 0.
 - **C.** 3x + 2y 6 = 0.
 - **D.** 3x 2y + 6 = 0.
- 16. Consider two straight lines $L_1: 2x - 4y + 7 = 0$ and $L_2: x - 2y + 7 = 0$. Which of the following must be true?
 - I. L_1 and L_2 are parallel to each other.
 - II. L_1 and L_2 have one point of intersection.
 - III. L_1 and L_2 have the same y-intercept.
 - A. I only
 - **B.** II only
 - C. III only
 - **D.** I and III only

17. If the straight line 4x + y - 167 = 0 is perpendicular to the straight line 4x + ky - 167 = 0, then k =

- **A.** -16.
- **B.** −1.
- **C.** 1.
- **D.** 16.
- **18.** $\sqrt[4]{\sqrt{x}} =$ **A.** $\sqrt[5]{x}$. **B.** $\sqrt[6]{x}$. **C.** $\sqrt[8]{x}$.
 - **D.** $\sqrt[10]{x}$.
- 19. In the figure, the straight line y = -4x + 9cuts the quadratic curve $y = x^2 - 2x + 1$ at *A* and *B*. Find the coordinates of *A*.

- **20.** In the figure, *O* is the centre of circle *ABCD*. Chords *AC* and *BD* intersect at *E*. If AM = MC = 12, BN = ND, OM = ON and NE = 5, then BE =
 - **A.** 6.
 - **B.** 7.
 - **C.** 8.
 - **D.** 9.

- **21.** In the figure, *ABCD* is a semi-circle. If $\angle ABD = 22^\circ$, then $\angle BCD =$
 - A. 116°.
 B. 112°.
 C. 108°.
 D. 104°.
- 22. In the figure, O is the centre of circle ABC. OB and AC intersect at D. If AO // BC and $\angle ADB = 66^{\circ}$, then $\angle AOB =$
 - A. 22°. B. 33°. C. 44°. D. 66°.
- **23.** In the figure, *O* is the centre of circle *ABCDEF*. $\triangle XYZ$ intersects the circle at *A*, *B*, *C*, *D*, *E* and *F*. If $\angle XOZ = 132^{\circ}$ and *BC* = *DE* = *FA*, then $\angle XYZ =$

- **24.** In the figure, *O* is the centre of circle *ABCD*. If $\widehat{AB} : \widehat{CDA} = 1 : 3$ and $\angle BOC = 40^\circ$, then $\angle ACB =$
 - A. 40° .

 B. 42° .

 C. 44° .

 D. 46° .

25. Form a quadratic equation in x whose roots are $2 + \sqrt{5}$ and $2 - \sqrt{5}$.

- **A.** $x^2 4x 1 = 0$
- **B.** $x^2 + 4x 1 = 0$
- C. $x^2 4x + 1 = 0$
- **D.** $x^2 + 4x + 1 = 0$
- 26. The figure shows the graph of $y = ax^2 + bx + 1$, where *a* and *b* are constants. Which of the following must be true?

- $A. \quad a < 0 \text{ and } b < 0$
- **B.** a < 0 and b > 0
- **C.** a > 0 and b < 0
- **D.** a > 0 and b > 0
- **27.** The L.C.M. of $6a^3b$, $8a^2b^2$, $20a^4$ is **A.** $2a^2$. **B.** $2a^2b$.
 - **C.** $120a^4b^2$.
 - **C.** 120u v.
 - **D.** $120a^{11}b^3$.
- 28. If $\log 2 = a$ and $\log 3 = b$, then $\log_6 5 =$ A. $\frac{\log(1-a)}{\log(a+b)}$. B. $\frac{1}{\log(a+b)}$. C. $\frac{1-a}{a+b}$. D. $\frac{1}{a(a+b)}$.

29. Solve
$$81x^4 - 97x^2 + 16 = 0$$
.
A. $x = -\frac{2}{3}$ or $\frac{2}{3}$
B. $x = -\frac{4}{9}$ or $\frac{4}{9}$
C. $x = -1$, $-\frac{2}{3}$, $\frac{2}{3}$ or 1
D. $x = -1$, $-\frac{4}{9}$, $\frac{4}{9}$ or 1

30. The figure shows the graph of $y = 5^x$. The coordinates of *P* are

- **A.** (1, 0).**B.** (0, 1).
- **C.** (5, 0).
- **D.** (0, 5).
- **31.** In the figure, the graph shows the linear relation between $\log_2 y$ and $\log_2 x$. Which of the following must be true?

32.
$$\frac{1}{x^2 - 4x + 4} - \frac{1}{x^2 - 3x + 2} =$$

A.
$$\frac{2x - 3}{(x - 1)(x - 2)^2}.$$

B.
$$\frac{1}{(x - 1)(x - 2)^2}.$$

C.
$$-\frac{3}{(x - 1)(x - 2)^2}.$$

D.
$$-\frac{3}{(x - 1)(x - 2)}.$$

33.
$$(7-i)(5+i) =$$

A. $34-2i$.

B. 34 + 2i.

- C. 36 2i.
- **D.** 36 + 2i.
- **34.** In the figure, $\angle ACB = 90^\circ$. *PQR* is the inscribed circle of $\triangle ABC$. If AC = 5 and

- A. 2.
- **B.** 4.
- **C.** 5.
- **D.** 7.

35. In the figure, *PAQ* is the tangent to the circle *AB* at *A*. *O* is the centre of the circle. If $\angle BAQ = 46^\circ$, then $\angle AOB =$

- **36.** In the figure, *ABCD* is a circle. *AC* and *BD* meet at *E*. If AE = 2, DE = 3, BE = 5 and BC = 6, then CE =
 - A. 2.4.B. 4.
 - **C.** 6.
 - **D.** 7.5.

END OF PAPER