2019-2020 S4 2nd TERM EXAM-MATH-CP 1

19-20 F.4 2nd TERM EXAM MATH CP PAPER 1

> 2019 – 2020 Form 4 Second Term Examination

MATHEMATICS Compulsory Part

PAPER 1

Question–Answer Book

24th June, 2020 8:15 am – 9:45 am (1 hour 30 minutes) **This paper must be answered in English**

INSTRUCTIONS

- 1. Write your name, class and class number in the spaces provided on this cover.
- This paper consists of THREE sections, A(1), A(2) and B.
- Attempt ALL questions in this paper. Write your answers in the spaces provided in this Question – Answer Book. Do not write in the margins. Answers written in the margins will not be marked.
- 4. Unless otherwise specified, all working must be clearly shown.
- 5. Unless otherwise specified, numerical answers should be either exact or correct to 3 significant figures.
- 6. The diagrams in this paper are not necessarily drawn to scale.

Sections	Marks
A (1 – 4)	/14
A (5 – 10)	/28
A Total	/42
B Total	/28
TOTAL	/70

•	Make <i>a</i> the subject of the formula $2c(5a+3b) = 7a$.	(3 marks)
-		
•	Simplify $\frac{b^3}{(2a^6b^{-3})^{-2}}$ and express your answer with positive indices.	(3 marks)
•	Simplify $\frac{b^3}{(2a^6b^{-3})^{-2}}$ and express your answer with positive indices.	(3 marks)
•	Simplify $\frac{b^3}{(2a^6b^{-3})^{-2}}$ and express your answer with positive indices.	(3 marks)
•	Simplify $\frac{b^3}{(2a^6b^{-3})^{-2}}$ and express your answer with positive indices.	(3 marks)
•	Simplify $\frac{b^3}{(2a^6b^{-3})^{-2}}$ and express your answer with positive indices.	(3 marks)
•	Simplify $\frac{b^3}{(2a^6b^{-3})^{-2}}$ and express your answer with positive indices.	(3 marks)
•	Simplify $\frac{b^3}{(2a^6b^{-3})^{-2}}$ and express your answer with positive indices.	(3 marks)
•	Simplify $\frac{b^3}{(2a^6b^{-3})^{-2}}$ and express your answer with positive indices.	(3 marks)
•	Simplify $\frac{b^3}{(2a^6b^{-3})^{-2}}$ and express your answer with positive indices.	(3 marks
•	Simplify $\frac{b^3}{(2a^6b^{-3})^{-2}}$ and express your answer with positive indices.	(3 marks
•	Simplify $\frac{b^3}{(2a^6b^{-3})^{-2}}$ and express your answer with positive indices.	(3 marks
•	Simplify $\frac{b^3}{(2a^6b^{-3})^{-2}}$ and express your answer with positive indices.	(3 marks

Fact (a) (b)	torize 8a - 20b, $6a^2 - 11ab - 10b^2$,	
(c)	$6a^2 - 11ab - 10b^2 - 8a + 20b$.	(4 marks)
The (a)	marked price of a vase is \$480. The vase sold at a discount of 25% on the marked Find the selling price of the vase.	ed price.
(b)	If the profit percentage is 20%, find the cost of the vase.	(4 marks)

In the figure, if $\angle ADB = 25^\circ$, $\angle ADB = 25$	$BDC = 40^{\circ} \text{ and } AB = -$	4 cm , find <i>BC</i> and $\angle AOC$. (4 ma
		$\begin{array}{c} A & A \\ \hline \\ 25^{\circ}O \\ \hline \\ 40^{\circ} \\ D \end{array}$

			5 ma
 	 	A	
	/		\square
 	 /		
		\sim	
		4	

7.	Consider $f(x) = x^3 + 5x^2 - kx - 5$, where k is a real constant. When $f(x)$ is divided by $x + the remainder is 0$	2,
	(a) Prove that $r + 5$ is a factor of $f(r)$ (4 marks)	3)
	(a) From that $x + 5$ is a factor of $f(x) = 0$ are distinct. Do you agree? Explain you	יי ur
	(b) This chains that all the roots of $f(x) = 0$ are distinct. Do you agree. Explain yo	
	answer. (2 marks	\$)

Answers written in the margins will not be marked.

8.	The (a) (b) (c)	figure shows the graph of $y = -x^2 + 3x + 4$. Find the coordinates of <i>A</i> , <i>B</i> and <i>C</i> . Find the area of $\triangle ABC$. Find the coordinates of the vertex of the graph.	Y	(3 marks) (1 mark) (2 marks)
	· · · · · · · · · · · · · · · · · · ·			$= 4 + 3x - x^2$
	······			

Answers written in the margins will not be marked.

(a) (b) (c)	 If L₁ and L₂ are perpendicular to each other, find the value of a. Find the point of intersection of L₁ and L₂. Find the equation of straight line passing through the <i>y</i>-intercept of L₁ and para 	(3 mai (2 mai allel to <i>I</i>
		(2 mar

Answers written in the margins will not be marked.

Sect 10.	tion B (28 marks) Solve the equation $1029 \cdot 49^{x+1} = 3$.	(3 marks)
11.	Solve the equation $\log(2x+1) + \log(3x-7) = \log(11x+1)$.	(3 marks)

12.	If $a+6i = \frac{bi}{3-i}$, find <i>a</i> and <i>b</i> .	(3 marks)
13.	Solve the equation $9^x - 5 \cdot 3^x + 4 = 0$.	(3 marks)

14.	Con (a) (b)	sider the equation $kx^2 + 2x - 6 = 0$. Find the range of values of k if the equation has no real roots. (2 marks) Let α and β be the roots of the above equation by using the greatest integral value of k in (a). Form an equation with roots $\alpha - 2$ and $\beta - 2$. (3 marks)
	·····	

15. In the figure, *DOA*, *FCA* and *EBA* are straight lines. *FA* and *EA* are the tangents to the circle *BCD* at *C* and *B* respectively.

(a) Find $\angle BOA$.(2 marks)(b) Show that $\triangle ABD \cong \triangle ACD$.(3 marks)(c) Hence find $\angle DBE$.(3 marks)

Answers written in the margins will not be marked.

16. The figure shows the linear relation between $\log_9 y$ and $\log_3 x$. The slope and the intercept on the vertical axis of the graph are 3 and 5 respectively. Express the relation between x and yin the form $y = Ax^k$, where A and k are constants. (3 marks) log, y/ 5 0 $\log_3 x$ **End of Paper**

Answers written in the margins will not be marked.