2019-2020 S4 1st TERM EXAM-MATH-CP 2

2019 - 2020 F.4 First Term Examination

MATHEMATICS Compulsory Part PAPER 2

6th January, 2020 9:30 am – 10:15 am Time Allowed ÷ 45 minutes

INSTRUCTIONS

- 1. Read carefully the instructions on the Answer Sheet. Insert the information required in the spaces provided.
- 2. When told to open this book, you should check that all the questions are there. Look for the words 'END OF PAPER' after the last question.
- 3. All questions carry equal marks.
- 4. **ANSWER ALL QUESTIONS**. You should use an HB pencil to mark all your answers on the Answer Sheet, so that wrong marks can be completely erased with a clean rubber. You must mark the answers clearly; otherwise you will lose marks if the answers cannot be captured.
- 5. You should mark only **ONE** answer for each question. If you mark more than one answer, you will receive **NO MARKS** for that question.
- 6. No marks will be deducted for wrong answers.

The diagrams in this paper are not necessarily drawn to scale. Choose the best answer for each question. Section A

- 1. $(5 \cdot 25^{n+1})^3 =$
 - A. 5^{6n+6} .
 - B. 5^{6n+9} .
 - C. 5^{9n+3} .
 - D. 5^{9n+6} .

2. If
$$\frac{p+2q}{pq} = 1$$
, then $q =$

A.
$$\frac{p}{p-2}$$
.
B.
$$\frac{p}{2-p}$$
.
C.
$$\frac{p-2}{p}$$
.
D.
$$\frac{2-p}{p}$$
.

- 3. Let m and n be constants. If $m(x+4)^2 + n(x-1)^2 \equiv x^2 + 28x + 46$, then m =
 - A. 1.
 - B. 3.
 - C. –2.
 - D. -4.
- 4. $(3x+y)^2 (3x-y)^2 =$
 - A. 0.
 - B. $2y^2$.
 - C. 6xy.
 - D. 12xy.

- **5.** Which of the following numbers must be rational?
 - I. $3\pi \sqrt{2}$ II. 3.141
 - III. $\sqrt{5} + 3\sqrt{5} \sqrt{80}$
 - A. II only
 - B. III only
 - C. II and III only
 - D. I, II and III

6. Solve
$$2x^2 - 5x - 6 = 0$$
.

A.
$$-\frac{5}{4} \pm \frac{\sqrt{37}}{4}$$

B. $\frac{5}{4} \pm \frac{\sqrt{37}}{4}$
C. $-\frac{5}{4} \pm \frac{\sqrt{73}}{4}$
D. $\frac{5}{4} \pm \frac{\sqrt{73}}{4}$

- 7. Let k be a constant. Solve the equation 2x = x(x k).
 - A. x = 0 only B. x = k only C. x = 0 or x = 2 + kD. x = 0 or x = k
- 8. Let *a* be a constant. Find the range of values of *a* such that the quadratic equation $5x^2 + 10x + a = 6$ has no real roots.
 - A. a < 11B. a > 11C. a < 5D. a > 5

9. If
$$f(x) = x^2 + 2x - 13$$
, then $2f(3) - 1 =$

- A. 3.
- B. 5.
- C. 15.
- D. 28.

10. If
$$f(x) = 3x^2 - 4x - 1$$
, then $f(2m + 1) =$

- A. $6m^2 2m 2$.
- B. $6m^2 2m + 6$.
- C. $12m^2 + 4m 2$.
- D. $12m^2 8m 2$.
- 11. Which of the following may represent the graph of $y = 2x^2 + 7x + 3$?

12. Which of the following is a function of *x*?

I.
$$y = \frac{1}{\sqrt{x^2 + 3}}$$

II. $y = x^3 - \frac{1}{x}$, where $x \neq 0$
III. $y^2 = 1 - x$, where $x \le 1$

- A. I and II only
- B. I and III only
- C. II and III only
- D. I, II and III
- 13. The figure shows the graph of $y = a(x-h)^2 + k$. Which of the following

- A. I and II only
- B. I and III only
- C. II and III only
- D. I, II and III
- 14. The figure shows the graph of $y = (x-h)^2 + k$ with two x-intercepts -3 and 1. Find the values of h and k.

- **15.** Find the quotient when $-6x^3 + 5x^2 10x + 1$ is divided by 1 3x.
 - A. $-2x^2 + x + 3$ B. $-2x^2 - x + 3$ C. $2x^2 + x - 3$
 - D. $2x^2 x + 3$
- 16. Let f(x) be a polynomial. If f(x) is divisible by x - 2, which of the following must be a factor of f(x-2)?
 - A. *x* + 2
 - B. *x*
 - C. x 2
 - D. x 4
- 17. Let $f(x) = x^3 3x + k$, where k is a constant. If f(x) is divisible by x - 3, find the remainder when f(x) is divided by x + 3.
 - A. -36
 - B. -18
 - C. 0
 - D. 18
- **18.** The domain of the function $f(x) = \frac{1}{\sqrt{x-1} - \sqrt{x}}$ is
 - A. All real numbers.
 - B. All real numbers except 0.
 - C. All real numbers greater than or equal to 0.
 - D. All real numbers greater than or equal to 1.

- **19.** Find the equation of straight line L with *x*-intercept p and slope q.
 - A. px y pq = 0B. px + y + q = 0C. qx - y - pq = 0D. qx - y + p = 0

Section B

20. If the sum of the roots of $4x^2 - 2x + k(2x-1) = 0$ is 4, find the value of k. A. -1 B. -4

- C. –7
- D. –10

21. The H.C.F. of $6x^3y^2z^5$, $8x^2y^8z^3$ and $12xy^3$ is

- A. $2xy^2$. B. $2xy^2z^3$. C. $24x^3v^8z^5$.
- D. $24xy^2z^3$.

22. The L.C.M. of $2x^2 - x - 1$ and $4x^2 - 1$ is

- A. (x+1)(2x+1)(2x-1).
- B. (x-1)(2x+1)(2x-1).
- C. $(x+1)(2x+1)^2(2x-1)$.
- D. $(x-1)(2x+1)^2(2x-1)$.

23.
$$\frac{2x}{x^2 - 3x + 2} - \frac{x - 3}{x^2 - 4x + 3} =$$
A.
$$\frac{x + 2}{(x - 1)(x - 2)}$$
B.
$$\frac{x + 3}{(x - 1)(x - 2)}$$
C.
$$\frac{x + 2}{(x - 1)(x - 3)}$$
D.
$$\frac{x + 3}{(x - 1)(x + 2)}$$

24. Form a quadratic equation in x whose roots are $2 + \sqrt{5}$ and $2 - \sqrt{5}$.

- A. $x^2 4x 1 = 0$ B. $x^2 + 4x - 1 = 0$ C. $x^2 - 4x + 1 = 0$
- D. $x^2 + 4x + 1 = 0$
- **25.** Find the minimum value of the function $y = x^2 + 12x$.
 - A. –4
 - B. –16
 - C. –36
 - D. -64
- **26.** Let $f(x) = 2x^2 + 4x + k$, where k is a constant. If the y-coordinate of the vertex of the graph of y = f(x) is -9, then k =
 - A. –11.
 - B. –7.
 - C. –5.
 - D. 8.

27. If
$$\frac{9x+2}{(x-7)(x+6)} \equiv \frac{A}{x-7} + \frac{B}{x+6}$$
, then

A.
$$A = -5, B = -4.$$

B. $A = -5, B = 4.$
C. $A = 5, B = -4.$
D. $A = 5, B = 4.$

END OF PAPER