19-20 F. 5 2nd TERM EXAM-MATH-CP 1

19-20 F. 5
2 $^{\text {nd }}$ TERM EXAM
MATH CP
PAPER 1
Form $52^{\text {nd }}$ Term Examination

MATHEMATICS Compulsory Part

PAPER 1

Question-Answer Book

$26^{\text {th }}$ June, 2020
8:15 a.m. - 10:30 a.m. (2 hours 15 minutes) This paper must be answered in English.

INSTRUCTIONS

1. Write your name, class and class number in the spaces provided on this cover.
2. This paper consists of THREE sections, $\mathrm{A}(1)$, $\mathrm{A}(2)$ and B .
3. Attempt ALL questions in this paper. Write your answers in the spaces provided in this Question-Answer Book. Do not write in the margins. Answers written in the margins will not be marked.
4. Unless otherwise specified, all working must be clearly shown.
5. Unless otherwise specified, numerical answers should be either exact or correct to 3 significant figures.
6. The diagrams in this paper are not necessarily drawn to scale. ,

Section	Marks
$\mathrm{A}(1-5)$	
$\mathrm{A}(6-14)$	$/ \mathbf{7 0}$
A Total	$/ \mathbf{3 5}$
B Total	$/ \mathbf{1 0 5}$
TOTAL	

Section A(1) (35 marks)

1. Make x the subject of the formula $\frac{3 x+2 y}{7}=2 x-p$.
2. Simplify $\frac{a^{3} b^{8}}{\left(a^{-2} b^{4}\right)^{3}}$ and express your answer in positive indices.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
3. Factorize
(a) $6 p^{2}+7 p q-3 q^{2}$,
(b) $6 p^{2}+7 p q-3 q^{2}-6 p-9 q$.
(3 marks)
\qquad
4. On a public holiday, Mr. Chan and Mrs. Chan are watching a movie with their 3 children in a cinema. It is given that the ticket price of an adult is 50% higher than that of a child. If Mr. Chan pays $\$ 300$ for the tickets, what is the ticket price of a child?
\qquad \square
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad $\rightarrow+3$
5. The coordinates of the points M and N are $(3,7)$ and $(-9,3)$ respectively. M is reflected to M^{\prime} with respect to the x-axis. N is rotated anticlockwise about the origin O through 90° to N^{\prime}.
(a) Write down the coordinates of M^{\prime} and N^{\prime}.
(b) Is $M^{\prime} N$ perpendicular to $M N^{\prime}$? Explain your answer.
\qquad
\qquad $\rightarrow+\infty+\infty$
6. (a) Solve the compound inequality $6(3 x-6)>21 x+2$ or $3 x+15>0$.
(b) Hence, write down the smallest positive integer satisfying the compound inequality.
\qquad
7. The histogram in Figure 1 shows the distribution of scores of a class of 40 students in a test.

Table 1 Frequency distribution table for the scores of 40 students

Score (x)	Class Mark	Frequency
$44 \leq x<52$		3
$52 \leq x<60$		
	64	15
$68 \leq x<76$	80	11

(a) Complete Table 1.
(b) Find the mean and standard deviation of the distribution.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
8. In Figure 2, O is the centre of circle $A B C D . \angle A B D=32^{\circ}$ and $\angle O C D=54^{\circ}$.

Find $\angle C O D$ and $\angle A D E$.
(4 marks)
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad

Figure 2
9. In Figure 3, $A B C$ is a circle with centre O and radius of 8. $\angle A O C=100^{\circ}$. Find the area of the segment $A B C$.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Figure 3

Section A(2) (35 marks)
10. Solve $-4 \sin x=\sin \left(x+270^{\circ}\right)$ where $0^{\circ} \leq x \leq 360^{\circ}$
(give your answer correct to 1 decimal place)
\qquad
\qquad
\qquad .
\qquad
\qquad
\qquad
11. The data below represent the number of sit-ups done by 20 people in 1 minute.

10	13	21	23	25	25	26	27	27	32
34	35	36	37	38	38	43	44	45	46

(a) Find the median and the inter-quartile range of this distribution.
(b) These 20 people then attend a physical training session. The box-and-whisker diagram in Figure 4 shows the distribution of the number of sit-ups done by these 20 people in 1 minute after the physical training session.

Figure 4
(i) Is the distribution of the number of sit-ups done more dispersed after the physical training session? Explain your answer.
(ii) According to two sets of data above, a newspaper reporter makes the following statement:
'At least 25% of those 20 people show improvement in the number of sit-ups done after the physical training session.'

Do you agree? Explain your answer.
\qquad
12. It is given that $f(x)$ and $g(x)$ are polynomials of degree 3 satisfying the following two conditions:
(1) $f(x)=g(x)+x^{3}+k x^{2}+8 x+8$, where k is a constant;
(2) $f(x)$ and $g(x)$ are both divisible by $x+2$.
(a) Find the value of k.
(b) Suppose that when $g(x)$ is divided by $x^{2}-1$, the quotient and the remainder are $2 x+1$ and $a x-15$ respectively.
(i) Find the value of a.
(ii) Someone claims that all the roots of the equation $f(x)=0$ are rational numbers. Do you agree? Explain your answer.
\qquad
13. An inverted right circular conical vessel contains some milk. The vessel is held vertically. The depth of milk in the vessel is 12 cm . Peter then pours $444 \pi \mathrm{~cm}^{3}$ of milk into the vessel without overflowing. He now finds that the depth of milk in the vessel is 16 cm .
(a) Express the final volume of milk in the vessel in terms of π. (3 marks)
(b) Peter claims that the final area of the wet curved surface of the vessel is at least $800 \mathrm{~cm}^{2}$.

Do you agree? Explain your answer.
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
14. It is given that $f(x)$ is the sum of two parts, one part varies as x^{2} and the other part is a constant. Suppose that $f(2)=17$ and $f(7)=242$.
(a) (i) Find $f(x)$.
(ii) Solve $f(x)=0$.
(5 marks)
(b) Wyman draws a square in the region (including the boundary lines) bounded by $y=f(x)$ and the x-axis. Find the area of the square that he can draw.
(2 marks)
15. In Figure 5, the straight line $L_{1}: 4 x-3 y+12=0$ and the straight line L_{2} are perpendicular to each other and intersect at A. It is given that L_{1} cuts the y-axis at B and L_{2} passes through the point $(4,9)$.
(a) Find the equation of L_{2}.
(3 marks)
(b) Q is a moving point in the coordinate plane such that $A Q=B Q$. Denote the locus of Q by Γ.
(i) Describe the geometric relationship between Γ and $A B$.
(ii) Find the equation of Γ.
(4 marks)

Figure 5
\qquad
\qquad and

Section B (35 marks)
16. Solve the following equations.
(a) $5\left(4^{x}\right)+3\left(2^{x+2}\right)-9=0$
(b) $\log _{4}(8 x-16)-\log _{4}(x-3)=2$
17. The shaded region represents the solutions of a system of inequalities. Write down the system of inequalities.

Answers written in the margins will not be marked.
19-20 F. $52^{\text {nd }}$ TERM EXAM-MATH-CP 1- 11
18. The back-to-back stem-and-leaf diagram in Figure 6 shows the marks of a Mathematics examination of 15 boys and 15 girls of class 5 S . It is given that the mean and standard deviation of the mark are 71 and 10 respectively.

Girls Leaf (1)	Stem (10)	Boys Leaf (1)
753	5	8
9654222	6	3369
83	7	12479
531	8	33467

Figure 6
(a) Maple is a girl getting 81 marks in class 5 S . Find the standard score of Maple in class 5 S .
(b) 4 students are randomly chosen from class 5 S whose scores are higher than 81 to participate in a Mathematics competition.
(i) Find the probability that at least one girl is chosen.
(ii) Given that exactly 2 of the selected students getting the same mark, find the probability that both of them are boys.
\qquad
19. In Figure 7, A, B, C and D lie on the same horizontal plane. D is a point lying on $A C$ such that $A D=D C$. It is given that the compass bearing of B from C is $\mathrm{N} 55^{\circ} \mathrm{W}$ and that of C from A is $\mathrm{N} 70^{\circ} \mathrm{E} . B D=B C=32 \mathrm{~m}$.
(a) Find the length of $D C$. (3 marks)
(b) Find the length of $A B$. (3 marks)
(c) Find the area of $\triangle A B C$. (2 marks)

\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
20. There are 12 story books to be distributed to 3 children A, B and C. Find the number of ways of distributing the books
(a) if each child gets 4 books,
(b) if one child gets 3 books, one gets 4 books and one gets 5 books.
21. In Figure $8, O E$ is a diameter of the circle $O A E B . \angle B E O=2 \angle B O E$.
(a) Find $\angle B O E$.
(b) A rectangular coordinate system is introduced in the Figure 8 so that the coordinates of O and B are $(0,0)$ and $(6,0)$ respectively. Find the equation of the circle $O A E B$. (4 marks)

Figure 8

END OF PAPER

