
2018-2019 S4 2nd TERM EXAM-MATH-CP 2

2018 – 2019 Form 4 Second Term Examination

MATHEMATICS Compulsory Part

PAPER 2

5th June, 2019. (Wednesday) 10:15 am – 11:15 am (1 hour)

INSTRUCTIONS

- 1. Read carefully the instructions on the Answer Sheet. After the announcement of the start of the examination, you should insert the information required in the spaces provided.
- 2. When told to open this book, you should check that all the questions are there. Look for the words 'END OF PAPER' after the last question.
- 3. All questions carry equal marks.
- 4. **ANSWER ALL QUESTIONS**. You should use an HB pencil to mark all your answers on the Answer Sheet, so that wrong marks can be completely erased with a clean rubber. You must mark the answers clearly; otherwise you will lose marks if the answers cannot be captured.
- 5. You should mark only **ONE** answer for each question. If you mark more than one answer, you will receive **NO MARKS** for that question.
- 6. No marks will be deducted for wrong answers.

There are 24 questions in Section A and 12 questions in Section B. The diagrams in this paper are not necessarily drawn to scale. Choose the best answer for each question.

Section A

- A seller marked the price of a selfie stick such that he can make a profit of 60 %. During the summer sale, 30 % discount was offered and the selling price of the selfie stick was \$61.6. Find the cost of the selfie stick.
 - **A.** \$30.8
 - **B.** \$46.2
 - **C.** \$55
 - **D.** \$58

2.
$$3a^{2} + a - 3b^{2} - b =$$

A. $(a - b)(3a + 3b + 1)$.
B. $(a - b)(3a - 3b + 1)$.
C. $3(a - b)(a + b + 1)$.
D. $3(a - b)(a - b + 1)$.

3. If a and n are constants and a > 0, $\frac{a^n \times a^n \times a^n}{a^n + a^n + a^n} =$ A. $\frac{1}{3}$. B. 1. C. $\frac{a^3}{3}$. D. $\frac{a^{2n}}{3}$.

- 4. Make p the subject of the formula $\frac{hp-y}{a} = 2p$ A. $p = \frac{y}{2a-h}$ B. $p = \frac{y}{h-2a}$ C. $p = \frac{2a-h}{y}$ D. $p = \frac{h-2a}{y}$
- 5. Arrange 0.2019, 0.2019, 0.2019 in descending order.
 A. 0.2019, 0.2019, 0.2019
 - **A.**0.2019, 0.2019, 0.2019**B.**0.2019, 0.2019, 0.2019**C.**0.2019, 0.2019, 0.2019**D.**0.2019, 0.2019, 0.2019

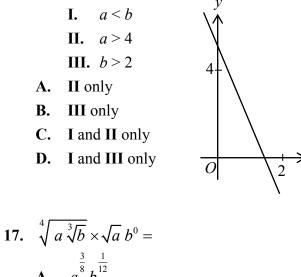
6.
$$\sqrt{98a} - \frac{4\sqrt{a}}{\sqrt{2}} =$$

A. $\sqrt{6a}$.
B. $3\sqrt{2a}$.
C. $\sqrt{10a}$.
D. $5\sqrt{2a}$.

7. Solve the equation x(2x-3)=9.

A.
$$x = -\frac{3}{2}$$
 or -3
B. $x = -\frac{3}{2}$ or 3
C. $x = \frac{3}{2}$ or -3
D. $x = \frac{3}{2}$ or 3

- 8. If $f(x) = 3^{x} + \frac{1}{3^{x}}$, f(x) + f(-x) =A. 0. B. 2. C. -2 f(x).
 - **D.** 2f(x).
- 9. Consider the function $y = (1-4x)^{-\frac{1}{2}}$. Find the largest possible domain of the function.
 - **A.** $x < \frac{1}{4}$ **B.** $x \le \frac{1}{4}$ **C.** $x > \frac{1}{4}$ **D.** $x \ge \frac{1}{4}$
- 10. Which of the following statements about the graph of y = (2 x) (x + 3) 6 is/are true?
 - I. The graph opens upwards.
 - **II.** The graph passes through the point (1, -2).
 - **III.** The *x*-intercepts of the graph are -3 and 2.
 - A. I only
 - B. II only
 - C. I and III only
 - **D.** II and III only
- 11. Find the quotient when $2x^3 + 3x^2 5$ is divided by 2x-1.
 - A. $x^2 x + 1$ B. $x^2 - 2x + 3$ C. $x^2 + 2x + 1$ D. $x^2 + 2x + 3$

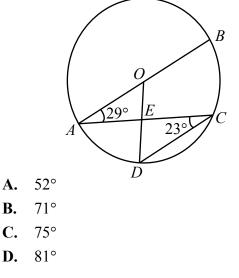

- 12. If k is a constant such that $x^3 3x^2 kx + 6$ is divisible by x 2, find the value of k. A. 1
 - **B.** 7
 - **C.** 13
 - **D.** 15

13.
$$\frac{1}{3y-2x} - \frac{1}{2x+3y} =$$
A.
$$\frac{6y}{9y^2 - 4x^2}$$
B.
$$\frac{4x}{9y^2 - 4x^2}$$
C.
$$\frac{6y}{4x^2 - 9y^2}$$
D.
$$\frac{4x}{4x^2 - 9y^2}$$

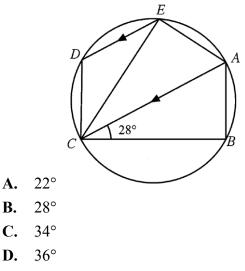
- 14. The *x*-intercept and *y*-intercept of the straight line *L* are *k* and -2*k* respectively. If *L* passes through *P* (3, -4), find the equation of *L*.
 - **A.** x 2y 11 = 0
 - **B.** x 2y 10 = 0
 - C. 2x y 11 = 0D. 2x - y - 10 = 0
- 15. If the straight lines $L_1: kx 6y + 12 = 0$ and $L_2: 3x + 2y - 8 = 0$ are perpendicular to each other, find the value of k.
 - **A.** −9 **B.** −4
 - **C.** 4
 - **D.** 9

2018-2019 F.4 2nd TERM EXAM - MATH - CP 2 - 3

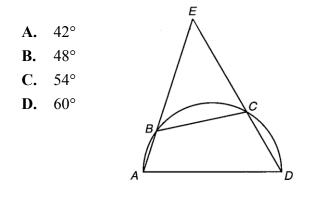
16. In the figure, the equation of the straight line *L* is ax + by - 8 = 0. Which of the following are true?



- 7. $\sqrt{a}\sqrt{b} \times \sqrt{a} b^{0}$ A. $a^{\frac{3}{8}}b^{\frac{1}{12}}$. B. $a^{\frac{3}{8}}b^{\frac{3}{8}}$. C. $a^{\frac{3}{4}}b^{\frac{1}{12}}$. D. $a^{\frac{3}{4}}b^{\frac{3}{8}}$.
- **18.** Solve the equation $4^{3x-5} = 8^{x+2}$. **A.** $x = \frac{15}{7}$ **B.** $x = \frac{14}{5}$
 - C. $x = \frac{16}{3}$
 - **D.** x = 9
- **19.** If the simultaneous equations $\begin{cases} y = x^2 + 3x + 1 \\ y = 2x + k \end{cases}$ have no real solutions, which of the following can be a possible
 - value of k?
 - **A.** 0
 - **B.** 2
 - **C.** 4
 - **D.** 6


- **20.** Find the real root(s) of $\sqrt{7-2x} = 2-x$.
 - **A.** x = -1

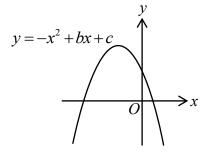
> *x*


- **B.** x = 3
- **C.** x = -1 or 3
- **D.** no real solution
- **21.** In the figure, *AB* is a diameter of the circle *ADCB* with centre *O*. *AC* and *OD* meet at *E*. If $\angle CAB = 29^{\circ}$ and $\angle ACD = 23^{\circ}$, find $\angle OEC$.

22. In the figure, AC is a diameter of the circle ABCDE and it is also the angle bisector of $\angle BCE$. It is given that AC // ED and $\angle ACE = 28^{\circ}$. Find $\angle DCE$.

23. In the figure, ABCD is a semi-circle. AB and DC are produced to meet at E. If AB: BC: CD = 3:7:5, find $\angle AED$.

24. In the figure, O is the centre of the circle ASRB and APOQB is a diameter. PS and QR are perpendicular to SR. If AB = 34 cmSR = 30 cmand find PS + QR.

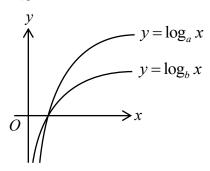

- **C.** 16 cm
- **D.** 17 cm

 \cap

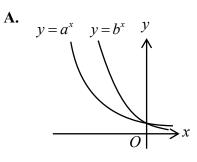
Section **B**

25. If $\alpha \neq \beta$ and $\begin{cases} 2\alpha = 3\alpha^2 - 5\\ 2\beta = 3\beta^2 - 5 \end{cases}$, find the value of $\alpha + \beta + \alpha\beta$. A. $-\frac{7}{3}$ **B.** −1 **C.** 1 $\frac{7}{3}$ D.

26. The figure shows the graph of $y = -x^2 + bx + c.$

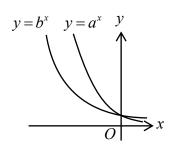

Which of the following is true?

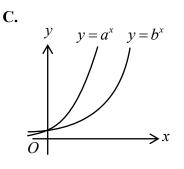
- A. b < 0 and c < 0
- **B.** b < 0 and c > 0
- **C.** b > 0 and c < 0
- **D.** b > 0 and c > 0
- **27.** The H.C.F. of the polynomials $2x^4 2x^2$ and $2x^4 - 2$ is **A.** $2x^4$ **B.** (x+1)(x-1)C. 2(x+1)(x-1)**D.** $2x^{2}(x+1)(x-1)$

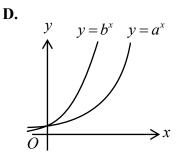

28.
$$(\log_x y^4)(\log_{\sqrt{y}} x^7) =$$

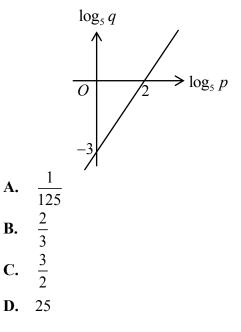
A. $-\frac{5}{2}$
B. $\frac{7}{12}$
C. 14
D. 56

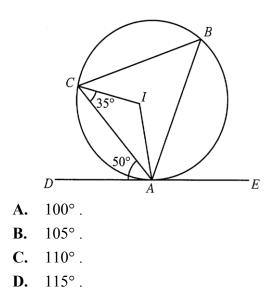
29. If $\log 2 = a$ and $\log 3 = b$, $\log 0.15 =$ A. b - a - 10. **B.** b - a - 1. $\frac{b-a}{10}$ C. **D.** $\frac{b}{10a}$.


30. The figure shows the graphs of $y = \log_a x$ and $y = \log_b x$.

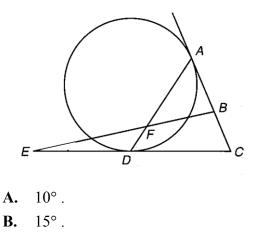



Which of the following can be the graphs of $y = a^x$ and $y = b^x$?


B.

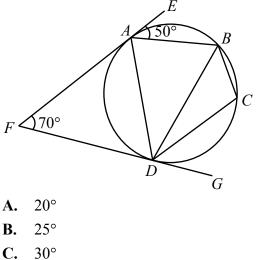


31. In the figure, the graph shows the linear relation between $\log_5 p$ and $\log_5 q$. If k and n are constants such that $p = kq^n$, find the value of k.



- 32. Solve the equation $2\log 25x^2 - (\log 5x)^2 = 3$. A. x = 1 or 3 B. x = 2 or 200 C. x = 5 or 500 D. x = 10 or 1000
- **33.** If -1 + 3i and -1 3i are the roots of the equation $x^2 + ax + b = 0$ where *a* and *b* are real constants, find the values of a + b.
 - **A.** -10
 - **В.** -6 **С.** 8
 - \mathbf{C}
 - **D.** 12

34. In the figure, *I* is the incentre of $\angle ABC$. *DE* is the tangent to the circle *ABC* at *A*. If $\angle ACI = 35^{\circ}$ and $\angle CAD = 50^{\circ}$, find $\angle AIC$.



35. In the figure, *ABC* and *CDE* are tangents to the circle at *A* and *D* respectively. *AD* and *BE* intersect at *F*. If $\angle ABE = 50^{\circ}$ and $\angle AFE = 120^{\circ}$, find $\angle BEC$.

- **C.** 20°.
- **D.** 25°.

36. In the figure, *EF* and *FG* are the tangents to the circle *ABCD* at *A* and *D* respectively. If $\angle EFG = 70^{\circ}$, $\angle EAB = 50^{\circ}$ and AD = DC, find $\angle BDC$.

D.

35°

END OF PAPER