2018-2019 S4 2nd TERM EXAM-MATH-CP 2

MATHEMATICS Compulsory Part
 PAPER 2

$5^{\text {th }}$ June, 2019. (Wednesday)
10:15 am - 11:15 am (1 hour)

INSTRUCTIONS

1. Read carefully the instructions on the Answer Sheet. After the announcement of the start of the examination, you should insert the information required in the spaces provided.
2. When told to open this book, you should check that all the questions are there. Look for the words 'END OF PAPER' after the last question.
3. All questions carry equal marks.
4. ANSWER ALL QUESTIONS. You should use an HB pencil to mark all your answers on the Answer Sheet, so that wrong marks can be completely erased with a clean rubber. You must mark the answers clearly; otherwise you will lose marks if the answers cannot be captured.
5. You should mark only ONE answer for each question. If you mark more than one answer, you will receive NO MARKS for that question.
6. No marks will be deducted for wrong answers.

There are $\mathbf{2 4}$ questions in Section A and 12 questions in Section B.
The diagrams in this paper are not necessarily drawn to scale.
Choose the best answer for each question.

Section A

1. A seller marked the price of a selfie stick such that he can make a profit of 60%. During the summer sale, 30% discount was offered and the selling price of the selfie stick was $\$ 61.6$. Find the cost of the selfie stick.
A. $\$ 30.8$
B. $\$ 46.2$
C. $\$ 55$
D. $\$ 58$
2. $3 a^{2}+a-3 b^{2}-b=$
A. $(a-b)(3 a+3 b+1)$.
B. $(a-b)(3 a-3 b+1)$.
C. $3(a-b)(a+b+1)$.
D. $3(a-b)(a-b+1)$.
3. If a and n are constants and $a>0$, $\frac{a^{n} \times a^{n} \times a^{n}}{a^{n}+a^{n}+a^{n}}=$
A. $\frac{1}{3}$.
B. 1 .
C. $\frac{a^{3}}{3}$.
D. $\frac{a^{2 n}}{3}$.
4. Make p the subject of the formula $\frac{h p-y}{a}=2 p$.
A. $p=\frac{y}{2 a-h}$
B. $p=\frac{y}{h-2 a}$
C. $p=\frac{2 a-h}{y}$
D. $p=\frac{h-2 a}{y}$
5. Arrange $0 . \dot{2} 01 \dot{9}, 0.2 \dot{0} \dot{1}, 0.20 \dot{1} \dot{9}$ in descending order.
A. $0 . \dot{2} 01 \dot{9}, 0.2 \dot{0} 1 \dot{9}, 0.20 \ddot{1} \dot{9}$
B. $0.20 \dot{1} \dot{9}, 0.2 \dot{0} 1 \dot{9}, 0 . \dot{2} 01 \dot{9}$
C. $0 . \dot{2} 01 \dot{9}, 0.20 \ddot{1} \dot{9}, 0.2 \dot{0} 1 \dot{9}$
D. $0.2 \dot{0} \dot{1} \dot{9}, 0.20 \dot{1} \dot{9}, 0 . \dot{2} 01 \dot{9}$
6. $\sqrt{98 a}-\frac{4 \sqrt{a}}{\sqrt{2}}=$
A. $\sqrt{6 a}$.
B. $3 \sqrt{2 a}$.
C. $\sqrt{10 a}$.
D. $5 \sqrt{2 a}$.
7. Solve the equation $x(2 x-3)=9$.
A. $x=-\frac{3}{2}$ or -3
B. $x=-\frac{3}{2}$ or 3
C. $x=\frac{3}{2}$ or -3
D. $x=\frac{3}{2}$ or 3
8. If $f(x)=3^{x}+\frac{1}{3^{x}}, f(x)+f(-x)=$
A. 0 .
B. 2 .
C. $-2 f(x)$.
D. $2 f(x)$.
9. Consider the function $y=(1-4 x)^{-\frac{1}{2}}$. Find the largest possible domain of the function.
A. $x<\frac{1}{4}$
B. $x \leq \frac{1}{4}$
C. $x>\frac{1}{4}$
D. $x \geq \frac{1}{4}$
10. Which of the following statements about the graph of $y=(2-x)(x+3)-6$ is/are true?
I. The graph opens upwards.
II. The graph passes through the point (1, -2) .
III. The x-intercepts of the graph are -3 and 2 .
A. I only
B. II only
C. I and III only
D. II and III only
11. Find the quotient when $2 x^{3}+3 x^{2}-5$ is divided by $2 x-1$.
A. $x^{2}-x+1$
B. $x^{2}-2 x+3$
C. $x^{2}+2 x+1$
D. $x^{2}+2 x+3$
12. If k is a constant such that $x^{3}-3 x^{2}-k x+6$ is divisible by $x-2$, find the value of k.
A. 1
B. 7
C. 13
D. 15
13. $\frac{1}{3 y-2 x}-\frac{1}{2 x+3 y}=$
A. $\frac{6 y}{9 y^{2}-4 x^{2}}$.
B. $\frac{4 x}{9 y^{2}-4 x^{2}}$.
C. $\frac{6 y}{4 x^{2}-9 y^{2}}$.
D. $\frac{4 x}{4 x^{2}-9 y^{2}}$.
14. The x-intercept and y-intercept of the straight line L are k and $-2 k$ respectively. If L passes through $P(3,-4)$, find the equation of L.
A. $x-2 y-11=0$
B. $x-2 y-10=0$
C. $2 x-y-11=0$
D. $2 x-y-10=0$
15. If the straight lines $L_{1}: k x-6 y+12=0$ and $L_{2}: 3 x+2 y-8=0$ are perpendicular to each other, find the value of k.
A. -9
B. -4
C. 4
D. 9
16. In the figure, the equation of the straight line L is $a x+b y-8=0$. Which of the following are true?
I. $a<b$
II. $a>4$
III. $b>2$
A. II only
B. III only
C. I and II only
D. I and III only

17. $\sqrt[4]{a \sqrt[3]{b}} \times \sqrt{a} b^{0}=$
A. $a^{\frac{3}{8}} b^{\frac{1}{12}}$.
B. $a^{\frac{3}{8}} b^{\frac{3}{8}}$.
C. $a^{\frac{3}{4}} b^{\frac{1}{12}}$.
D. $a^{\frac{3}{4}} b^{\frac{3}{8}}$.
18. Solve the equation $4^{3 x-5}=8^{x+2}$.
A. $x=\frac{15}{7}$
B. $x=\frac{14}{5}$
C. $x=\frac{16}{3}$
D. $x=9$
19. If the simultaneous equations $\left\{\begin{array}{l}y=x^{2}+3 x+1 \\ y=2 x+k\end{array}\right.$ have no real solutions, which of the following can be a possible value of k ?
A. 0
B. 2
C. 4
D. 6
20. Find the real root(s) of $\sqrt{7-2 x}=2-x$.
A. $x=-1$
B. $x=3$
C. $x=-1$ or 3
D. no real solution
21. In the figure, $A B$ is a diameter of the circle $A D C B$ with centre $O . A C$ and $O D$ meet at E. If $\angle C A B=29^{\circ}$ and $\angle A C D=23^{\circ}$, find $\angle O E C$.

A. 52°
B. 71°
C. 75°
D. 81°
22. In the figure, $A C$ is a diameter of the circle $A B C D E$ and it is also the angle bisector of $\angle B C E$. It is given that $A C / / E D$ and $\angle A C E=28^{\circ}$. Find $\angle D C E$.

A. 22°
B. 28°
C. 34°
D. 36°
23. In the figure, $A B C D$ is a semi-circle. $A B$ and $D C$ are produced to meet at E. If $A B: B C: C D=3: 7: 5$, find $\angle A E D$.
A. 42°
B. 48°
C. 54°
D. 60°

24. In the figure, O is the centre of the circle $A S R B$ and $A P O Q B$ is a diameter. $P S$ and $Q R$ are perpendicular to $S R$. If $A B=34 \mathrm{~cm}$ and $S R=30 \mathrm{~cm}$, find $P S+Q R$.
A. 14 cm
B. 15 cm
C. 16 cm
D. 17 cm

Section B

25. If $\alpha \neq \beta$ and $\left\{\begin{array}{l}2 \alpha=3 \alpha^{2}-5 \\ 2 \beta=3 \beta^{2}-5\end{array}\right.$, find the value of $\alpha+\beta+\alpha \beta$.
A. $-\frac{7}{3}$
B. -1
C. 1
D. $\frac{7}{3}$
26. The figure shows the graph of $y=-x^{2}+b x+c$.

Which of the following is true?
A. $b<0$ and $c<0$
B. $\quad b<0$ and $c>0$
C. $b>0$ and $c<0$
D. $b>0$ and $c>0$
27. The H.C.F. of the polynomials $2 x^{4}-2 x^{2}$ and $2 x^{4}-2$ is
A. $2 x^{4}$
B. $(x+1)(x-1)$
C. $2(x+1)(x-1)$
D. $2 x^{2}(x+1)(x-1)$
28. $\left(\log _{x} y^{4}\right)\left(\log _{\sqrt{y}} x^{7}\right)=$
A. $-\frac{5}{2}$
B. $\frac{7}{12}$
C. 14
D. 56
29. If $\log 2=a$ and $\log 3=b, \log 0.15=$
A. $b-a-10$.
B. $b-a-1$.
C. $\frac{b-a}{10}$.
D. $\frac{b}{10 a}$.
30. The figure shows the graphs of $y=\log _{a} x$ and $y=\log _{b} x$.

Which of the following can be the graphs of $y=a^{x}$ and $y=b^{x}$?
A.

B.

C.

D.

31. In the figure, the graph shows the linear relation between $\log _{5} p$ and $\log _{5} q$. If k and n are constants such that $p=k q^{n}$, find the value of k.

A. $\frac{1}{125}$
B. $\frac{2}{3}$
C. $\frac{3}{2}$
D. 25
32. Solve the equation

$$
2 \log 25 x^{2}-(\log 5 x)^{2}=3
$$

A. $x=1$ or 3
B. $x=2$ or 200
C. $x=5$ or 500
D. $x=10$ or 1000
33. If $-1+3 i$ and $-1-3 i$ are the roots of the equation $x^{2}+a x+b=0$ where a and b are real constants, find the values of $a+b$.
A. -10
B. -6
C. 8
D. 12
34. In the figure, I is the incentre of $\angle A B C$. $D E$ is the tangent to the circle $A B C$ at A. If $\angle A C I=35^{\circ}$ and $\angle C A D=50^{\circ}$, find $\angle A I C$.

A. 100°.
B. 105°.
C. 110°.
D. 115°.
35. In the figure, $A B C$ and $C D E$ are tangents to the circle at A and D respectively. $A D$ and $B E$ intersect at F. If $\angle A B E=50^{\circ}$ and $\angle A F E=120^{\circ}$, find $\angle B E C$.

A. 10°.
B. 15°.
C. 20°.
D. 25°.
36. In the figure, $E F$ and $F G$ are the tangents to the circle $A B C D$ at A and D respectively. If $\angle E F G=70^{\circ}, \angle E A B=50^{\circ}$ and $A D=D C$, find $\angle B D C$.

A. 20°
B. 25°
C. 30°
D. 35°

