2018-2019 S4 2nd TERM EXAM-MATH-CP 1

18-19 F. 4 2nd TERM EXAM MATH CP PAPER 1

$$
2018-2019
$$

Form 4 Second Term Examination

MATHEMATICS Compulsory Part

PAPER 1

Question-Answer Book

$5^{\text {th }}$ June, 2019
8:15 am - 9:45 am (1 hour 30 minutes)
This paper must be answered in English

INSTRUCTIONS

1. Write your name, class and class number in the spaces provided on this cover.
2. This paper consists of THREE sections, $\mathrm{A}(1)$, $\mathrm{A}(2)$ and B .
3. Attempt ALL questions in this paper. Write your answers in the spaces provided in this Question - Answer Book. Do not write in the margins. Answers written in the margins will not be marked.
4. Unless otherwise specified, all working must be clearly shown.
5. Unless otherwise specified, numerical answers should be either exact or correct to 3 significant figures.
6. The diagrams in this paper are not necessarily drawn to scale.

Sections	Marks
$\mathrm{A}(1-4)$	$/ 14$
$\mathrm{~A}(5-10)$	$/ 27$
A Total	$/ \mathbf{1 1}$
B Total	$/ \mathbf{2 9}$
TOTAL	

Section A(1) (14 marks)

1. Simplify $\frac{\left(3 a^{-2} b^{3}\right)^{2}}{a^{-2} b^{-1}}$ and express your answer with positive indices.
2. Factorize
(a) $2 x y-2 y$,
(b) $x^{2}-4 x+3$,
(c) $x^{2}-4 x+3-2 x y+2 y$.
\qquad
Answers written in the margins will not be marked.
3. Make a the subject of the formula $\frac{6 a-2 b+3}{4 a}=7$.
4. The cost of a toy car is $\$ 40$. It is sold at a profit percentage of 20%.
(a) Find the selling price of the toy car.
(b) If the marked price of the toy car is $\$ 80$, find the discount percentage.
\qquad
\qquad

Answers written in the margins will not be marked.

Section A(2) (27 marks)

5. In the figure, O is the centre of the circle $A B C D$. It is given that $\angle A B O=32^{\circ}, \angle A D C=112^{\circ}$ and $\angle D C O=44^{\circ}$. Find $\angle O B C$ and $\angle B A D$.
\qquad
\qquad

6. Consider the points $A(0,2), B(2,1)$ and $C(-4,4)$.
(a) Show that A, B and C are collinear.
(b) Find the equation of the perpendicular bisector of $A C$.
\qquad

Answers written in the margins will not be marked.
7. Given that the polynomial $x^{3}+m x^{2}+n x+15$ is divisible by $x+3$, where m and n are constants. When it is divided by $x-2$, the remainder is -15 .
(a) Find the values of m and n.
(b) Sam claims that the equation $x^{3}+m x^{2}+n x+15=0$ has 3 distinct real roots. Do you agree? Explain your answer.
(3 marks)

Answers written in the margins will not be marked.
8. The figure shows the graph of $y=-2(x+2)^{2}+18$. The graph cuts the y-axis at B and cuts the x-axis at C and D.
(a) If $A B$ is a horizontal line, find the coordinates of A. (3 marks)
(b) Find the coordinates of C and D. (2 marks)
(c) If $A B D E$ is a parallelogram, find the coordinates of $E . \quad(2$ marks)

\qquad
Answers written in the margins will not be marked.
9. In the figure, $O A B C$ is a sector with centre $O . A C$ is the angle bisector of $\angle O A B$.

(a) Are $A B$ and $O C$ parallel? Explain your answer.
(b) If $\angle A O B=80^{\circ}$, find $A B: B C$.

Answers written in the margins will not be marked.

Section B (29 marks)

10. Solve $7 \cdot 3^{2 x-1}=11$. Give your answer correct to 3 significant figures if necessary. (3 marks)
11. Consider the equation $2 x^{2}-4 x+k=0$.
(a) Find the range of values of k if the equation has imaginary roots.
(b) Using the smallest integral value of k in (a), solve the equation.

Answers written in the margins will not be marked.
12. The loudness of sound L (in dB) is given by $L=10 \log \frac{I}{I_{0}}$, where I is the intensity of the sound (in W/m ${ }^{2}$) and I_{0} is the minimum audible sound intensity for a normal person. It is given that $I_{0}=10^{-12} \mathrm{~W} / \mathrm{m}^{2}$.
(a) If the loudness of a sound is 35 dB , find the intensity of the sound.
(b) Amy claims that if the intensity of the sound in (a) is reduced to $\frac{1}{10000}$ of the original, a normal person still can hear the new sound. Do you agree? Explain your answer.(2 marks)

Answers written in the margins will not be marked.
13. The graph of $y=x^{2}+k x+3$ intersects the straight line $y=4 x+k$ at exactly one point.
(a) Find the value of k.
(3 marks)
(b) Find the point of intersection.
(2 marks)
\qquad

Answers written in the margins will not be marked.
14. In the figure, $A C$ is the tangent to the circle at C. $A F I G B, C I D$ and $C G E$ are straight lines. $A B / / D E$ and $\angle C E D=\angle C D A$.

Prove that
(a) (i) $A D$ is the tangent to the circle at D.
(ii) A, C, G and D are concyclic.
(iii) $\triangle D E G$ is an isosceles triangle.
(b) If $G H$ is the angle bisector of $\angle D G E$, prove that the centre of the circle must lie on the line passing through G and H.
\qquad
\qquad $\square .3$
\qquad

Answers written in the margins will not be marked.

14 continued

Answers written in the margins will not be marked.
15. Let a and b be constants. Denote the graph of $y=2 \log _{a} x+b$ as G. It is given that G passes through $(8,2)$ and the x-intercept of G is 2 . Express x in terms of y.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

