2018-2019 S4 1st TERM UT-MATH

18-19 F. 4 1st TERM UT MATH CP
 $$
2018-2019
$$
 Form 4 First Term Uniform Test

 MATHEMATICS Compulsory Part

 MATHEMATICS Compulsory Part

 Question-Answer Book

 Question-Answer Book}
$6^{\text {th }}$ November, 2018
8:15 am - 9:15 am (1 hour)
This paper must be answered in English

INSTRUCTIONS

1. Write your name, class and class number in the spaces provided on this cover.
2. Answer ALL questions in Section A. You are advised to use an HB pencil to mark all the answers on the Answer Sheet, so that wrong marks can be completely erased with a clean rubber. You must mark the answers clearly; otherwise you will lose marks if the answers cannot be captured. You should mark only ONE answer for each question. If you mark more than one answer, you will receive NO MARKS for that question.
3. Attempt ALL questions in Sections B and C. Write your answers in the spaces provided in this Question - Answer Book.
4. Unless otherwise specified, all working must be clearly shown and numerical answers should be either exact or correct to 3 significant figures.
5. The diagrams in this paper are not necessarily drawn to scale.

Section	Marks	
A Total	$/ 24$	
B $(13-16)$		
B (17-22)	$/ 36$	
B Total	$/ 8$	
C Total		
TOTAL		

Section A (24 marks)

Choose the best answer for each question.

1. Which of the following numbers is a rational number?
A. $\sqrt{3}+1$
B. $-\frac{\sqrt{64}}{3}$
C. $\sqrt{-\frac{9}{4}}$
D. 3π
2. Simplify $\sqrt{3}(4-2 \sqrt{12})$.
A. 0
B. $4 \sqrt{3}$
C. $2 \sqrt{3}-18$
D. $4 \sqrt{3}-12$
3. Which of the following is not a function of x for all positive values of x ?
A. $y=2-x^{2}$
B. $y=\sqrt{x+3}$
C. $y=\frac{x+3}{2}$
D. $y^{2}=x+5$
4. Which of the following is the domain of the function $f(x)=\frac{1}{x-1}$?
A. All real numbers
B. All real numbers greater than 1
C. All real numbers except 1
D. All real numbers smaller than 1
5. $4 h u+4 k u-7 h v-7 k v=$
A. $(h+k)(4 u-7 v)$.
B. $(u-v)(4 h+7 k)$.
C. $3(u-v)(h+k)$.
D. $28(u+v)(h-k)$.
6. Which of the following graphs represents that y is a function of x ?
A.

B.

C.

D.

7. $\frac{1}{3+\sqrt{2}}=$
A. $\frac{3-\sqrt{2}}{7}$.
B. $\frac{3+\sqrt{2}}{7}$.
C. $\frac{3+\sqrt{2}}{11}$.
D. $\frac{3}{13}$.
8. If $f(x)=\frac{x}{x+2}$, then $f\left(\frac{1}{3}\right)=$
A. 1 .
B. $\frac{1}{7}$.
C. $-\frac{1}{7}$.
D. $-\frac{1}{5}$.
9. Solve the equation $(x-3)(x-4)=(a-3)(a-4)$ where a is a constant.
A. $x=0$ or $x=7$
B. $x=3$ or $x=4$
C. $x=a$ or $x=7-a$
D. $x=a$ or $x=7$
10. Solve the equation $-x^{2}+8 x-15=1$.
A. -4 only
B. 4 only
C. 3 or 5
D. 2 or 4
11. Form a quadratic equation in x with roots 3 and $-\frac{1}{2}$.
A. $2 x^{2}+5 x+3=0$
B. $2 x^{2}-5 x+3=0$
C. $2 x^{2}-5 x-3=0$
D. $2 x^{2}+5 x-3=0$
12. Suppose that the difference of two numbers is 4 and the sum of their squares is 5 times their sum. If the smaller number is denoted by x, which of the following is true?
A. $x^{2}-x-2=0$
B. $x^{2}-9 x+18=0$
C. $2 x^{2}+x+12=0$
D. $2 x^{2}+3 x-4=0$

Section B(1) (19 marks)

13. If $(x+2)(x-9) \equiv x^{2}+A x+B$, find the constants A and B.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
14. Simplify $\frac{\left(2 a^{-1} b^{0}\right)^{3}}{a^{-4} b^{7}}$ and express your answer with positive indices.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
15. Factorize
(a) $y^{2}-4 y+3$,
(b) $(2 y-3)^{2}-4(2 y-3)+3$.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
16. Make x the subject of the formula $y=\frac{x-m}{x-2 m}$.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
17. Simplify $\sqrt{45}-\sqrt{20}+4 \sqrt{5}+\frac{25 \sqrt{3}}{\sqrt{15}}$.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
18. Convert $0.7 \dot{4} \dot{5}$ into a fraction.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
19. Solve the equation $(2 a+3)(a+1)=3(a+3)$. (Leave your answers in surd form if necessary.)
\qquad

Section B(2) (17 marks)

20. Given that $g(x)=2 x^{2}-3 x+k$ and $g(1)=4$, where k is a constant.
(a) Find the value of k.
(2 marks)
(b) Hence find $g(x+2)$.
(c) If $f(x)=\frac{13-x}{5}$, find the value of $f(g(4))$.
(2 marks)
\qquad
21. A piece of wire is bent to form a right-angled triangle $A B C$ as shown. $B C=x \mathrm{~cm}, A B$ is 7 cm less than $B C$ and $A C$ is 1 cm longer than $B C$.
(a) Express $A B$ and $A C$ in terms of x.
(b) Hence find the value of x and the perimeter of $\triangle A B C$.

\qquad
\qquad
\qquad
\qquad
\qquad $\cdots 3$
\qquad
22. If the quadratic equation $2 x^{2}+4 x+k-5=0$ has two distinct real roots where k is a constant,
(a) find the range of values of k, (3 marks)
(b) solve the equation by taking the largest integral value of k. (give your answers correct to 2 decimal places)
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Section C (8 marks)

23. It is given that α and β are the roots of the quadratic equation $x^{2}-8 x-k=0$, where k is a constant.
(a) Find, in terms of k,
(i) $(\alpha+\beta)$,
(ii) $\alpha \beta$,
(iii) $\frac{1}{\alpha^{2} \beta^{2}}$,
(iv) $\frac{1}{\alpha^{2}}+\frac{1}{\beta^{2}}$.
(b) If $k=-16$, form a quadratic equation in x with the roots $\frac{1}{\alpha^{2}}$ and $\frac{1}{\beta^{2}}$.
\qquad
\qquad
\qquad
\qquad
\qquad 5
\qquad
