2018-2019 S4 1st TERM EXAM-MATH-CP 2

F.4 First Term Examination

MATHEMATICS Compulsory Part PAPER 2

4th January, 2019 9:30 am – 10:15 am Time Allowed ÷ 45 minutes

INSTRUCTIONS

- 1. Read carefully the instructions on the Answer Sheet. Insert the information required in the spaces provided.
- 2. When told to open this book, you should check that all the questions are there. Look for the words 'END OF PAPER' after the last question.
- 3. All questions carry equal marks.
- 4. **ANSWER ALL QUESTIONS**. You should use an HB pencil to mark all your answers on the Answer Sheet, so that wrong marks can be completely erased with a clean rubber. You must mark the answers clearly; otherwise you will lose marks if the answers cannot be captured.
- 5. You should mark only **ONE** answer for each question. If you mark more than one answer, you will receive **NO MARKS** for that question.
- 6. No marks will be deducted for wrong answers.

The diagrams in this paper are not necessarily drawn to scale. Choose the best answer for each question. Section A

- 1. $2.0\dot{4} + 3.\dot{0}\dot{5} =$
 - A. 5.09.
 - B. 5.094.
 - C. 5.094.
 - D. 5.1.
- **2.** If *n* is a positive integer, then $2^{2n} \cdot 3^n =$
 - A. 6^{2n} .
 - B. 6^{3n} .
 - C. 12^{*n*}.
 - D. 12^{2n} .

3. If
$$S = ut + \frac{1}{2}at^2$$
, then $a =$

A.
$$\frac{2(S-ut)}{t^2}.$$

B.
$$\frac{2(S+ut)}{t^2}.$$

C.
$$\frac{S-ut}{2t^2}.$$

D.
$$\frac{2(S-ut)}{t}.$$

- 4. $m^2 4mn + 4n^2 3m + 6n =$ A. (m-2n)(m-2n+3). B. (m-2n)(m-2n-3). C. (m+2n)(m+2n+3). D. (m+2n)(m+2n-3). 5. If *h* and *k* are constants
- 5. If h and k are constants such that $x^2 + hx(x+2) \equiv kx(x+3) 5x$, then k =
 - A. 2.
 - B. 3.
 - C. 4.
 - D. 5.

- 6. Which of the following equations has/have roots 4 and $-\frac{1}{2}$? I. (x-4)(2x+1) = 0II. (x+4)(2x-1) = 0III. (12-3x)(2x+1) = 0
 - A. I onlyB. II onlyC. I and III onlyD. II and III only
- 7. Solve the equation x(x+1) = a(a+1).
 - A. x = a only B. x = a + 1 only C. x = a or -a - 1D. x = a or a + 1
- 8. Let k be a constant. Find the range of values of k such that the equation $-x^2 + 8x + 2(k-1) = 0$ has no real roots.
 - A. k < -7B. k < 7C. k > 9D. k > -9
- 9. If $f(x-2) = x^2 2x$, then f(1) =
 - A. -1. B. 0. C. 1.
 - D. 3.
- **10.** If $f(2x) = 12x^2 8x + 2$, then f(x) =
 - A. $3x^2 4x + 2$. B. $3x^2 - 4x + 1$. C. $6x^2 - 4x + 1$. D. $12x^2 - 8x + 2$.

11. Which of the following CANNOT be graph of a function y = f(x)?

12. Which of the following may be the equation of the graph?

13. The figure shows the graph of $y = m(x-n)^2$, where *m* and *n* are constants. Which of the following is true?

- A. m < 0 and n < 0B. m < 0 and n > 0C. m > 0 and n < 0D. m > 0 and n > 0
- 14. The figure shows the graph of $y = x^2 + bx + c$, where b and c are constants. The equation of the axis of symmetry of the graph is

- 15. Let P(x) be a polynomial. When P(x) is divided by x 2, the quotient is $x^2 x + 3$ and the remainder is 9. Find P(x).
 - A. $x^{3}-3x^{2}+5x-15$ B. $x^{3}-3x^{2}-5x+3$ C. $x^{3}-3x^{2}+5x+3$ D. $x^{3}+3x^{2}-5x+3$
- 16. Let $f(x) = px^2 + 2x + q$, where p and q are constants. If f(x) is divisible by x + 1, find the remainder when f(x) is divided by x-1.
 - A. 0
 - B. 4
 - C. 2-q
 - D. 4-q
- 17. When f(x) is divided by x 2 and x 7, the remainders are both 2, which of the following is a factor of g(x) = f(x-3) - f(2x-3)?
 - A. x (x-5)B. (x-12)(x-7)C. (x-3)(x-5)D. (x-10)(2x-5)
- **18.** The domain of the function $y = \sqrt{1-3x}$ is

19. If m > 0 and c < 0, then which of the following may represent the graph of y + mx = c?

Section **B**

20. If
$$a > 0$$
, then $\frac{a}{4\sqrt{a}} + \frac{\sqrt{9a}}{6} =$
A. $\frac{\sqrt{a}}{4}$.
B. $\frac{3\sqrt{a}}{4}$.
C. \sqrt{a} .
D. $\frac{7\sqrt{a}}{2}$.

- **21.** The H.C.F. of $30x^4y^3$, $12x^2y^2$ and $8xy^2$ is A. $2xy^2$.
 - B. 6*xy*.
 - C. $120x^4y^3$.
 - D. $2880x^7y^6$.
- **22.** The L.C.M. of 3x-6, x^2-4 and x^3-8 is A. x-2. B. $(x-2)(x+2)(x^2+2x+4)$.
 - C. $3(x-2)(x+2)(x^2-2x+4)$.
 - D. $3(x-2)(x+2)(x^2+2x+4)$.

23.
$$\frac{x^{2} + x - 6}{x^{2} - 4} \times \frac{x^{2} + 2x}{x + 3} =$$
A. x.
B. $\frac{x}{x + 3}$.
C. $\frac{x}{x + 2}$.
D. $\frac{x - 2}{x + 3}$.

24. If
$$\alpha \neq \beta$$
 and $\begin{cases} 2\alpha^2 + 9 = 4\alpha \\ 2\beta^2 + 9 = 4\beta \end{cases}$, then $\alpha + \beta =$

- A. -2.
- B. 2. C. -4.5.
- D. 4.5.

- **25.** Let $f(x) = -2x^2 + 12x + k$. Find the coordinates of the vertex of the graph of y = f(x).
 - A. (-3, k+9)B. (-3, k+18)C. (3, k+9)
 - D. (3, k+18)
- 26. Consider the graph of $y=2x^2-6x+(k-1)$. If the y-intercept of the graph is positive, which of the following must be true?
 - I. The graph cuts the *x*-axis at two distinct points.
 - II. The axis of symmetry is x + 1.5 = 0.
 - III. The minimum value of the graph is k 5.5.
 - A. I only
 - B. II only
 - C. III only
 - D. I and III only
- **27.** In the figure, *ABCD* is a square of side 10 cm. If AE = AF and the area of $\triangle CEF$ is 20 cm², which of the following equations can be used to find *AF*?

END OF PAPER

Ans

1.	В	2.	С	3.	А	4.	В	5.	В	6.	С	7.	С	8.	А	9.	D	10.	А
11.	D	12.	В	13.	D	14.	А	15.	С	16.	В	17.	А	18.	В	19.	D	20.	В
21.	A	22.	D	23.	Α	24.	В	25.	D	26.	С	27.	D						

A7

B8

C5

D7