2018-2019 S4 1st TERM EXAM-MATH-CP 1

18-19 F.4 1st TERM EXAM MATH CP PAPER 1

> 2018 – 2019 Form 4 1st Term Examination

MATHEMATICS Compulsory Part

PAPER 1

Question-Answer Book

4th January, 2019. 8:15 a.m. – 9:15 a.m. (1 hour) **This paper must be answered in English.**

INSTRUCTIONS

- 1. Write your name, class and class number in the spaces provided on this cover.
- This paper consists of THREE sections, A(1), A(2) and B.
- 3. Attempt ALL questions in this paper. Write your answers in the spaces provided in this Question-Answer Book. Do not write in the margins. Answers written in the margins will not be marked.
- 4. Unless otherwise specified, all working must be clearly shown.
- Unless otherwise specified, numerical answers should be either exact or correct to 3 significant figures.
- 6. The diagrams in this paper are not necessarily drawn to scale.

Section	Marks
A (1 – 2)	
A (3 – 8)	
A Total	/ 35
B Total	/ 15
TOTAL	/ 50

18-19 F.4 1st TERM EXAM-MATH-CP 1-1

Section A(1) (16 marks) $\frac{ab^{-1}}{a^{-2}(3b^{4})^{3}}$ and express your answer with positive indices. 1. Simplify -(3 marks) Make x the subject of the formula (2-x)(2-y) = x. (3 marks) 2. Simplify $\frac{6}{\sqrt{12}} - \sqrt{75} + 7\sqrt{3}$. 3. (3 marks)

Answers written in the margins will not be marked. 18-19 F.4 1st TERM EXAM-MATH-CP 1- 2

Solve the quadratic equation $4x^2 - 5 = x(x+6)$ and express your answers in surd form if 4. necessary. (3 marks) (a) Factorize $9x^2 - y^2$. 5. **(b)** Simplify $\frac{2x+y}{3x-y} + \frac{2y(y-8x)}{9x^2-y^2}$ (4 marks)

Section A(2) (19 marks)

- Let $f(x) = 2x^3 + ax^2 5x + b$. When f(x) is divided by x 2, the remainder is 12. 6. f(x) is divisible by x+1. (4 marks)
 - (a) Find the values of a and b.
 - (b) Factorize f(x) completely.
 - (c) It is given that $g(x) = 6x^3 5x^2 + kx + 3$, where k is an integer. Is it possible that

f(x) and g(x) have two common linear factors? If possible, factorize g(x)completely. (3 marks)

(2 marks)

Answe	rs writte	en in th	e margi	ins will	not be n	narked.	
18-19	F.4 1 st	FERM I	EXAM	-MATH	I-CP 1-	4	

L_2 intersec	gure, two straight lines t at $A(2, a)$. L_1 is perpe		(2, a)
	-1. The values of k and a . The equation of L_2 .	(3 marks) (2 marks)	$L_1: y = 2x + k$
			<u> </u>
			Figure 1

(a) (b)	Find the value of k . Bowie claims that $f(g(0)) = g(f(0))$)). Do you agree?	(3 1 Explain your answer.
		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	(2 1

 Section B (15 marks) 9. The quadratic equation x² - (2k + 3)x + k² = 0 has real roots. (a) Find the range of values of k. (b) Let α and β be the roots of the equation. (i) Express the value of α² + β² in terms of k. 	(3 marks)
(ii) If $k = 3$, form a quadratic equation in x with roots α^2 a	and β^2 . (5 marks)

Answers written in the margins will not be marked. 18-19 F.4 1st TERM EXAM-MATH-CP 1- 8