18-19 F.5 1st TERM EXAM-MATH-CP 2

2018 – 2019 Form 5 First Term Examination

MATHEMATICS Compulsory Part

PAPER 2

2nd January, 2019. 10:30 am – 11:30 am (1 hour)

INSTRUCTIONS

- 1. Read carefully the instructions on the Answer Sheet. After the announcement of the start of the examination, you should insert the information required in the spaces provided.
- 2. When told to open this book, you should check that all the questions are there. Look for the words 'END OF PAPER' after the last question.
- 3. All questions carry equal marks.
- 4. **ANSWER ALL QUESTIONS**. You should use an HB pencil to mark all your answers on the Answer Sheet, so that wrong marks can be completely erased with a clean rubber. You must mark the answers clearly; otherwise you will lose marks if the answers cannot be captured.
- 5. You should mark only **ONE** answer for each question. If you mark more than one answer, you will receive **NO MARKS** for that question.
- 6. No marks will be deducted for wrong answers.

There are 23 questions in Section A and 13 questions in Section B. The diagrams in this paper are not necessarily drawn to scale. Choose the best answer for each question.

Section A

1. $(a^{2n})^3 =$ A. a^{8n^3} . B. a^{2n+3} . C. a^{6n} . D. a^{5n} .

2. If
$$a = 1 - \frac{1}{1-b}$$
, then $b =$
A. $-1 + \frac{1}{1+a}$.
B. $1 + \frac{1}{1-a}$.
C. $1 - \frac{1}{1+a}$.
D. $1 - \frac{1}{1-a}$.

3. If
$$(\sqrt{3} - \sqrt{2})x = 1$$
, then $x =$
A. $\sqrt{3} + \sqrt{2}$.
B. $\frac{1}{\sqrt{3} + \sqrt{2}}$.
C. $\frac{1}{\sqrt{3}} + \frac{1}{\sqrt{2}}$.
D. $\frac{\sqrt{3} - \sqrt{2}}{\sqrt{3} + \sqrt{2}}$.

- 4. The equation $x^2 + kx + k = 0$ has equal roots (k being a constant). k =
 - A. 4 only.
 - B. 0 or 4.
 - C. 0 or -4.
 - D. 4 or -4.

- 5. The costs of two kinds of coffee A and B are \$12/kg and \$20/kg respectively. In what ratio by weight should A and B be mixed so that the mixture will cost \$15/kg?
 - A. 2:3
 - B. 4:3
 - C. 5:3
 - D. 3:5
- 6. If 3x > -2y and y < 0, then A. $\frac{x}{y} > -\frac{3}{2}$. B. $\frac{x}{y} < \frac{2}{3}$. C. $\frac{x}{y} > -\frac{2}{3}$. D. $\frac{x}{y} < -\frac{2}{3}$.
- 7. The H.C.F. and L.C.M. of three expressions are xyz^2 and $x^3y^5z^4$ respectively. If two of the expressions are $x^2y^3z^3$ and x^3yz^2 , find the third expression.
 - A. xy^5z^4 B. xy^3z^4
 - C. $x^2y^5z^3$
 - D. $x^2y^5z^4$

8. In the figure, *EB* and *EC* are the angle bisectors of $\angle ABC$ and $\angle ACD$ respectively. If $\angle A = 40^{\circ}$, find $\angle E$.

- A. 40°
- B. 30°
- C. 25°
- D. 20°
- **9.** The following figures show the histograms of three distributions. Arrange them in ascending order of standard deviations.

- 10. How many non-negative integers satisfy both $-x+3 \ge 3x-5$ and 6x+23 > 5? A. 2 B. 3 C. 4
 - D. 5
- 11. y varies partly as $\frac{1}{x}$ and partly as x. y = 5 when x = 1 and $y = \frac{25}{2}$ when x = 4. Find y when x = 2. A. $\frac{5}{2}$ B. 4 C. $\frac{25}{4}$ D. 7
- **12.** Consider the following cuboid:

Let $V \text{ cm}^3$ be the volume of the cuboid and $S \text{ cm}^2$ be the total surface area of the cuboid. Which of the following is/are true?

- I. If z remains constant, then $V \propto xy$.
- II. If z remains constant, then $S \propto xy$.
- III. If x and y are constants, then S is partly constant and partly varies directly as V.
- A. I only
- B. I and II only
- C. I and III only
- D. II and III only

13. x and y are two variables. The table below shows some values of x and their corresponding values of y.

x	2	3	6	12
У	36	16	4	1

Which of the following may be a relation between x and y ?

A.
$$x \propto \sqrt{y}$$

B. $x \propto \frac{1}{\sqrt{y}}$
C. $x \propto \frac{1}{y^2}$
D. $x \propto \frac{1}{y}$

14. If *y* varies directly as *x*, which of the following must be true?

I.
$$(y+2) \propto (x+2)$$

II. $y \propto \frac{2}{r}$

- II. $y \propto -x$ III. $y^3 \propto x^3$
- A. I only
- B. II only
- C. I and III only
- D. II and III only
- 15. If a polynomial f(x) is divisible by x 1, then f(x 1) is divisible by
 - A. x 2.
 - B. x+2.
 - C. x 1.
 - D. *x*.

- **16.** If *A* is greater than *B* by 20% and *B* is smaller than *C* by 30%, then
 - A. A is smaller than C by 6%.
 - B. A is greater than C by 6%.
 - C. A is smaller than C by 16%.
 - D. A is greater than C by 16%.
- The graph shows the frequency curves of two symmetric distributions *P* and *Q*.

Which of the following is /are true?

- I. The mean of P < the mean of Q.
- II. The mode of P > the mode of Q.
- III. The inter-quartile range of P < the inter-quartile range of Q.
- A. I only
- B. I and III only
- C. II and III only
- D. I, II and III

18. The figure shows a circle with centre *O*. *P* and *Q* are points on the circumference of the circle such that the arc length of *PQ* is $\frac{1}{3}$ of the circumference. The tangents to the circle at *P* and *Q* intersect at *R*. Which of the following dotted lines / curves may represent the locus of *R* as *P* and *Q* move on the circle?

19. In the figure, a circle passing through the origin cuts the *x*-axis and the *y*-axis at A(-3, 0) and B(0, 4) respectively. Find the equation of the circle.

20. The figure shows straight line L: 2x-3y+6=0. P(x, y) is a point where the mid-point of *OP* lies on *L*. Find the equation of the locus of *P*.

21. The table shows the mean marks of two classes of students in a Mathematics Examination.

	Number of students	Mean mark
Class A	38	72
Class B	42	54

A student in Class A has scored 91 marks. It is found that his score was wrongly recorded as 19 in the calculation of the mean mark for Class A in the above table. Find the correct mean mark of the 80 students in the two classes.

- A. 61.65
- B. 63.45
- C. 63.65
- D. 63.9
- **22.** Which of the following equations represents a circle?

A.
$$(x-2)^2 + (y+3)^2 + 10 = 0$$

B. $\left(x - \frac{30}{7}\right)^2 + \left(y + \frac{18}{5}\right)^2 = \sqrt{23}$
C. $(x+7)^2 - \left(y - \frac{5}{2}\right)^2 = 82$
D. $3(x-5)^2 + 4(y-3)^2 = 6$

23. If the circumference of a circle $x^2 + y^2 + Dx - 6y - 3 = 0$ is 8π , find the value of *D*.

- A. 4
- B. 2
- C. 4 or -4
- D. 2 or -2

Section B

24. Solve $4x^2 - 9 \ge 0$. A. $x \ge \frac{9}{4}$ or $x \ge -\frac{9}{4}$ B. $x \le -\frac{9}{2}$ or $x \ge \frac{9}{4}$ C. $-\frac{3}{2} \le x \le \frac{3}{2}$ D. $x \le -\frac{3}{2}$ or $x \ge \frac{3}{2}$

25. If *p* is a root of $ax^2 + bx + c = 0$, which of the following is a root of $a(\frac{x-3}{2})^2 + b(\frac{x-3}{2}) + c = 0$? A. $\frac{p+3}{2}$ B. $\frac{p-3}{2}$ C. 2p-3D. 2p+3

26.
$$(i-1) - \frac{i+3}{i-2} =$$

A. 2.
B. 2*i*.
C. *i*+1.
D. 2*i*-2.

- 27. Solve $\log_2(x-1) + \frac{2}{\log_2(x-1)} = 3$.
 - A. x = 1B. x = 1 or 5
 - C. x = 2 or 3
 - D. x = 3 or 5
- **28.** In the figure, *O* is the centre and *TD* is the tangent to the circle at *C*. *AFC*, *DFG* and *AGOBT* are straight lines. If $DG \perp AT$ and $\angle FAG = 26^\circ$, find $\angle FDC$.

- A. 52°
- B. 54°
- C. 56°
- D. 58°
- 29. The figure shows the graph of $y = x^2 kx + 4$, where k > 0. Find the range of possible values of k.

- **30.** The heights of 600 children of the same age are normally distributed with a mean of 120 cm and a standard deviation of 5 cm. How many children are there with heights between 110 cm and 125 cm?
 - A. 180
 - B. 408
 - C. 489
 - D. 585
- **31.** A Mathematics quiz consists of 10 multiple choice questions. 2 marks will be awarded for each correct answer and no marks will be deducted for wrong answer. The mean and the standard deviation of the scores obtained by a group of students are 15 and 2 respectively. If Mary answers 9 questions correctly, find her standard score.
 - A. -3
 - B. -1.5
 - C. 1
 - D. 1.5
- **32.** In the figure, *TC* is a tangent to the circle at *C* and *AB* // *DC*. If $\angle BCT = 48^{\circ}$, then $\theta =$

- 33. The equation of a circle is $x^2 + y^2 2x + 5y 7 = 0$. Which of the following is/are true?
 - I. The circle passes through the point (-1, 1).
 - II. The centre of the circle is $(1, -\frac{5}{2})$.
 - III. The circle intersects the *x*-axis at two points.
 - A. II only
 - B. III only
 - C. II and III only
 - D. I, II and III
- 34. The mean and standard deviation of a distribution of test scores are m and s respectively. If 3 is multiplied to each score and then 4 marks are added to each score of the distribution, what are the mean and standard deviation of the new distribution?

	Mean	Variance
A.	3 <i>m</i>	$3s^{2}$
B.	3m + 4	$9s^{2}$
C.	3m + 4	9 <i>s</i>
D.	3 <i>m</i> +4	3s + 4

- **35.** If a datum '0' is added to a set of data with negative values only, which of the following must be true?
 - I. The range will increase.
 - II. The inter-quartile range will increase.
 - III. The standard deviation will increase.
 - A. I only
 - B. II only
 - C. I and III only
 - D. I, II and III

END OF PAPER

⊷ .v