2017-2018 S4 2nd TERM EXAM-MATH-CP 1

17-18 F. 4 2nd TERM EXAM MATH CP PAPER 1

$$
2017-2018
$$

Form 4 Second Term Examination

MATHEMATICS Compulsory Part

PAPER 1

Question-Answer Book

$5^{\text {th }}$ June, 2018
8:15 am - 9:45 am (1 hour 30 minutes)
This paper must be answered in English

INSTRUCTIONS

1. Write your name, class and class number in the spaces provided on this cover.
2. This paper consists of THREE sections, $\mathrm{A}(1)$, $\mathrm{A}(2)$ and B .
3. Attempt ALL questions in this paper. Write your answers in the spaces provided in this Question - Answer Book. Do not write in the margins. Answers written in the margins will not be marked.
4. Unless otherwise specified, all working must be clearly shown.
5. Unless otherwise specified, numerical answers should be either exact or correct to 3 significant figures.
6. The diagrams in this paper are not necessarily drawn to scale. draw

Sections	Marks
$\mathrm{A}(1-4)$	$/ 14$
$\mathrm{~A}(5-10)$	$/ 27$
A Total	$/ \mathbf{1 4 1}$
B Total	$/ \mathbf{2 9}$
TOTAL	

Section A(1) (14 marks)

1. Make b the subject of the formula $\frac{a}{b}=1-\frac{2 a}{c}$.
\qquad
2. Simplify $\frac{\left(-2 x y^{-1}\right)^{2}}{10 x y^{3}}$ and express your answer with positive indices.
\qquad
3. Factorize
(a) $a^{2}-10 a b+25 b^{2}$,
(b) $a^{2}-10 a b+25 b^{2}-a+5 b$.
4. A merchant bought an article for $\$ x$. He put it in his shop for sale at a marked price 70% higher than its cost. The article was then sold to a customer at a discount of 5%.
(a) What was the percentage gain for the merchant by selling the article?
(b) If the customer paid $\$ 2907$ for the article, find the value of x.

Section A(2) (27 marks)

5. Figure 1 shows a photograph with dimensions $11 \mathrm{~cm} \times 7 \mathrm{~cm}$ is fixed on a rectangular cardboard leaving a border of uniform width $x \mathrm{~cm}$.

Figure 1
(a) Express the area of the border in terms of x.
(b) If the area of the border is $114 \mathrm{~cm}^{2}$, find the value of x.
\qquad

Answers written in the margins will not be marked
6. Let $f(x)=a x^{3}-3 x^{2}+b x+4$. When $f(x)$ is divided by $x+1$ and $x-3$, the remainders are 6 and 10 respectively.
(a) Find the values of a and b.
(b) Find the remainder when $f(2 x)$ is divided by $(2 x-1)$.
\qquad
Answers written in the margins will not be marked
7. In Figure 2, the vertices of an isosceles triangle $O A B$ are O, A and $B(8,6)$ respectively. A is a point on the x-axis, and P is a point on $A B$ such that $O P \perp A B$.

Figure 2

Find
(a) the coordinates of A and P,
(b) the equations of $O P$ and $A B$.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad

\qquad

Answers written in the margins will not be marked
8. In Figure 3, the graph of $y=x^{2}-4 x-12$ touches the straight line $y=k$ at only one point D.

Figure 3
(a) (i) Find the coordinates of D.
(ii) Find the value of k.
(b) State the axis of symmetry and the y-intercept of the graph of $y=x^{2}-4 x-12$.
\qquad
9. In Figure 4, O is the centre of circle $A B C D . \angle C O B=100^{\circ}$ and $\overparen{A B}=\overparen{B C}$.

Figure 4
(a) Find x.
(b) Let E be a point on $B C$, find $\angle B E C$.

Section B (29 marks)

10. Solve $2^{2 x}-14\left(2^{x}\right)-32=0$.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
11. It is given that α and β are the roots of the quadratic equation $x^{2}+(7-2 k) x+(k-1)=0$. Given that $\alpha+\beta=3 \alpha \beta$.
(a) Find the value of k,
(b) (i) Find the value of $\alpha^{3}+\beta^{3}$.
(ii) Hence, write down the quadratic equation in y with roots α^{3} and β^{3}. (6 marks)
\qquad
Answers written in the margins will not be marked
12. Solve $\log _{8} x-\log _{16} x=\frac{1}{4}$ where $x>0$.
\qquad

Answers written in the margins will not be marked
13. (a) If $(2,3)$ satisfies the equation $x^{2}+k x+9-y=0$, find the value of k.
(b) Hence, solve the simultaneous equations $\left\{\begin{array}{l}x^{2}+k x+9-y=0 \\ 8 x+y=7\end{array}\right.$.
14. In Figure 5, two circles touch each other internally at $B . P Q$ is the common tangent to these circles at $B . A C$ is the tangent to the smaller circle at $R . A B$ and $B C$ cut the smaller circle at S and T respectively.

Figure 5
(a) (i) Show that $\triangle A S R \sim \triangle R T B$.
(ii) Hence, show that $B R$ is the angle bisector of $\angle A B C$.
(b) If $\triangle A B C$ is an equilateral triangle,
(i) prove that $B R$ is a diameter of the smaller circle,
(ii) write down two triangles other than $\triangle R T B$ which are similar to $\triangle A S R$.
\qquad
\qquad

14 continued

14 continued

Answers written in the margins will not be marked
15. In Figure 6, the straight line L shows the relation between $\log _{4} x$ and $\log _{4} y$. It is given that L passes through the points $(1,2)$ and $(9,6)$. If $y=k x^{a}$, find the values of k and a.

Figure 6

