2017-2018 S4 2nd TERM EXAM-MATH-CP 1

17-18 F.4 2nd TERM EXAM MATH CP PAPER 1

> 2017 – 2018 Form 4 Second Term Examination

MATHEMATICS Compulsory Part

PAPER 1

Question–Answer Book

5th June, 2018 8:15 am – 9:45 am (1 hour 30 minutes) **This paper must be answered in English**

INSTRUCTIONS

- 1. Write your name, class and class number in the spaces provided on this cover.
- This paper consists of THREE sections, A(1), A(2) and B.
- Attempt ALL questions in this paper. Write your answers in the spaces provided in this Question – Answer Book. Do not write in the margins. Answers written in the margins will not be marked.
- 4. Unless otherwise specified, all working must be clearly shown.
- 5. Unless otherwise specified, numerical answers should be either exact or correct to 3 significant figures.
- 6. The diagrams in this paper are not necessarily drawn to scale.

Sections	Marks
A (1 – 4)	/14
A (5 – 10)	/27
A Total	/41
B Total	/29
TOTAL	/70

	Make b the subject of the formula $\frac{a}{b} = 1 - \frac{2a}{c}$.	(3 marks)
2.	Simplify $\frac{(-2xy^{-1})^2}{10xy^3}$ and express your answer with positive indices.	(3 marks)

3.	Factorize	
	(a) $a^2 - 10ab + 25b^2$,	
	(b) $a^2 - 10ab + 25b^2 - a + 5b$.	. (3 marks)
4.	A merchant bought an article f than its cost. The article was the (a) What was the percentage	For x . He put it in his shop for sale at a marked price 70% higher nen sold to a customer at a discount of 5%. gain for the merchant by selling the article?
	(b) If the customer paid \$2.90	07 for the article, find the value of x .
	.,	(5 marks)

Section A(2) (27 marks)

5. Figure 1 shows a photograph with dimensions 11 cm \times 7 cm is fixed on a rectangular cardboard leaving a border of uniform width x cm.

- (a) Express the area of the border in terms of x.
- (b) If the area of the border is 114 cm^2 , find the value of x.

(4 marks)

Answers written in the margins will not be marked

(0) Lind	0 respectively. a) Find the values of a and b				
(b) Find	the remainder when $f(2x)$ is divided by $(2x-1)$.	(6 mar			

7. In Figure 2, the vertices of an isosceles triangle *OAB* are *O*, *A* and *B*(8, 6) respectively. *A* is a point on the *x*-axis, and *P* is a point on *AB* such that $OP \perp AB$.

Figure 2

Find

- (a) the coordinates of A and P,
- (b) the equations of *OP* and *AB*.

Answers written in the margins will not be marked

(6 marks)

8. In Figure 3, the graph of $y = x^2 - 4x - 12$ touches the straight line y = k at only one point D.

Figure 3

- (a) (i) Find the coordinates of D.
 - (ii) Find the value of k.
- (b) State the axis of symmetry and the *y*-intercept of the graph of $y = x^2 4x 12$.

(5 marks)

Answers written in the margins will not be marked

		\frown \frown
9.	In Figure 4, O is the centre of circle ABCD. $\angle COB = 100^{\circ}$ and	AB = BC.

Figure 4

- (a) Find x.
- (b) Let *E* be a point on *BC*, find $\angle BEC$.

(6 marks)

Answers written in the margins will not be marked

Sect 10.	tion B (29 marks) Solve $2^{2x} - 14(2^x) - 32 = 0$.	(3 marks)
11.	It is given that α and β are the roots of the quadratic equation $x^2 + (7 - 2k)x + (7 - 2k)x$	(k-1) = 0.
	Given that $\alpha + \beta = 3\alpha\beta$.	
	(a) Find the value of k, (b) (c) Γ 1.4 Γ Γ Γ $r^{3} + r^{3}$	
	(b) (i) Find the value of $\alpha^{2} + \beta^{3}$. (ii) Hence, write down the quadratic equation in y with roots α^{3} and β^{3} .	(6 marks)

12.	Solve $\log_8 x - \log_{16} x = \frac{1}{4}$ where $x > 0$.	(4 marks)

13.	(a)	If (2, 3) satisfies the equation $x^2 + kx + 9 - 4x + 9 = 10$	y = 0, find the value of k.	
	(b)	Hence, solve the simultaneous equations	$\begin{cases} x^{2} + kx + 9 - y = 0\\ 8x + y = 7 \end{cases}$	(4 marks)

14. In Figure 5, two circles touch each other internally at *B*. *PQ* is the common tangent to these circles at *B*. *AC* is the tangent to the smaller circle at *R*. *AB* and *BC* cut the smaller circle at *S* and *T* respectively.

15. In Figure 6, the straight line *L* shows the relation between $\log_4 x$ and $\log_4 y$. It is given that *L* passes through the points (1, 2) and (9, 6). If $y = kx^a$, find the values of *k* and *a*.

Answers written in the margins will not be marked

Answers written in the margins will not be marked

End of Paper