2017-2018 S4 1st TERM EXAM-MATH-CP 2

F.4 First Term Examination

MATHEMATICS Compulsory Part PAPER 2

3rd January, 2018 9:30 am – 10:15 am Time Allowed : 45 minutes

INSTRUCTIONS

- 1. Read carefully the instructions on the Answer Sheet. Insert the information required in the spaces provided.
- 2. When told to open this book, you should check that all the questions are there. Look for the words 'END OF PAPER' after the last question.
- 3. All questions carry equal marks.
- 4. **ANSWER ALL QUESTIONS**. You should use an HB pencil to mark all your answers on the Answer Sheet, so that wrong marks can be completely erased with a clean rubber. You must mark the answers clearly; otherwise you will lose marks if the answers cannot be captured.
- 5. You should mark only **ONE** answer for each question. If you mark more than one answer, you will receive **NO MARKS** for that question.
- 6. No marks will be deducted for wrong answers.

The diagrams in this paper are not necessarily drawn to scale. Choose the best answer for each question. Section A (20 marks)

- **1.** Which of the following is FALSE?
 - A. All recurring decimals are irrational numbers.
 - B. All integers are rational numbers.
 - C. All irrational numbers are real numbers.
 - D. Zero is a non-positive number.

$$2. \quad \frac{(a^2b^{-3})^2}{a^{-2}b} =$$

A.
$$\frac{a^2}{b^7}$$
.
B. $\frac{a^2}{b^5}$.
C. $\frac{a^6}{b^2}$.

 h^7

3. Solve x(2x+3) = x(3x-4).

A.
$$x = 0$$

B. $x = 0$ or $x = 7$
C. $x = -\frac{3}{2}$ or $x = \frac{4}{3}$
D. $x = 0$ or $x = -\frac{3}{2}$ or $x =$

 $\frac{4}{3}$

4.
$$hl - kl + hm - km - hn + kn =$$

- A. (h+k)(l-m+n). B. (h+k)(l+m-n).
- C. (h-k)(l-m+n).
- D. (h-k)(l+m-n).
- 5. If p and q are constants such that $x^2 + p \equiv (x+2)(x+q) + 10$, then p =
 - A. -4. B. -2.
 - C. 6.
 - D. 10.
- 6. The figure shows the graph of $y = a(x+b)^2$, where *a* and *b* are constants. Which of the following is true?

7. In the figure, the equation of the straight line is y = mx - c. Which one of the following is true?

- A. m > 0 and c > 0B. m > 0 and c < 0C. m < 0 and c < 0
- D. m < 0 and c > 0
- 8. If a > b and k < 0, which of the following must be true?
 - I. $a^2 > b^2$ II. a+k > b+kIII. $\frac{a}{k^2} > \frac{b}{k^2}$
 - A. I only
 - B. II only
 - C. I and III only
 - D. II and III only

- **9.** If *n* is a positive integer, which of the following numbers must be odd?
 - I. 2^{2n+1}
 - II. $3(2^n)$

III.
$$(2n+1)^2$$

- A. II only
- B. III only
- C. II and III only
- D. I, II and III
- **10.** Which of the following equations may be represented by the graph below?

A.
$$y = (x+2)(x-3)$$

B. $y = -12(x+2)(x-3)$
C. $y = -2(x-2)(x+3)$
D. $y = -2(x+2)(x-3)$

11.
$$\frac{x^2 - y^2}{x^2 - 2xy + y^2} =$$

A. 1.
B.
$$\frac{y-x}{x+y}$$
.
C. $\frac{x+y}{x-y}$.
D. $\frac{x+y}{y-x}$.

12. In the figure, the graph of y = k(x-1)(x-3), where k is a constant, cuts the x-axis at P and Q, and the y-axis at R. If the area of $\triangle PQR$ is 12 sq. units, find the value of k.

- A. 2
- B. 4
- C. 6
- D. It cannot be determined.
- **13.** The equation of the line passing through (1, -1) and perpendicular to the *x*-axis is
 - A. y+1=0. B. x+1=0.
 - C. y 1 = 0.
 - D. x 1 = 0.
- 14. Find the quotient when $2x^3 + x^2 + x 6$ is divided by x 3.
 - A. $2x^2 5x + 16$
 - B. 60
 - C. $2x^2 + 7x + 22$
 - D. $2x^2 7x + 22$

- 15. If $3x^4 + 5x^3 kx 12$ is divisible by x + 1, find the value of k.
 - A. 14
 B. 4
 C. -4
 D. -14
- 16. When a polynomial P(x) is divided by (5x-3), the remainder is -7. Which of the following is divisible by (3-5x)?
 - A. -P(x-7)B. -P(x+7)C. P(x)-7D. P(x)+7
- 17. The figure shows the graph of $y = x^2 + 4x + c$. Which of the following is a possible value of c?

A. 5
B. 4
C. 0
D. -4

18. The figure shows a graph of quadratic function. Which of the following functions may represent the given graph?

- A. $y = x^2 + 9x + 8$
- B. $y = -x^2 + 7x 8$
- C. $y = -(x+4)^2 + 24$
- D. $y = -(x-4)^2 + 24$
- **19.** The figure shows the graph of the equation y = -4x + 2.

Find the values of a-b.

A. 2 B. $\frac{3}{2}$ C. $-\frac{3}{2}$ D. -2 **20.** In the figure, *CD* is parallel to *AB*. Find the equation of *CD*.

- A. 2x+y-4=0B. 2x+y+4=0C. 4x+y+2=0
- D. 4x + y 2 = 0

Section B (7 marks)

21. Find the H.C.F. and L.C.M. of $5(7x-2)^2$,

$$6(7x-2)(x+6)$$
 and $10(x+6)^2$.

	<u>H.C.F.</u>	<u>L.C.M.</u>
A.	1	30(7x-2)(x+6)
B.	1	$30(7x-2)^2(x+6)^2$
C.	30	(7x-2)(x+6)
D.	30	$(7x-2)^2(x+6)^2$

- 22. The H.C.F. and L.C.M. of three expressions are a^2b^2c and $18a^4b^6c^4$ respectively. Two of the expressions are $2a^2b^3c^4$ and $6a^3b^2c^2$. The third expression is
 - A. $18a^4b^6c$. B. $18a^3b^2c^4$.
 - C. $9a^4b^6c$.
 - D. $9a^{3}b^{2}c^{4}$.

$$23. \quad \frac{6}{x^2 - 9} - \frac{5}{x^2 + x - 6} =$$

A.
$$\frac{1}{(x-2)(x+3)}$$
.
B. $\frac{1}{(x+2)(x-3)}$.
C. $\frac{1}{(x-2)(x-3)}$.
D. $\frac{x-27}{(x-2)(x+3)(x-3)}$.

- 24. If α and β are the roots of $2x^2 3x 4 = 0$, then $\alpha^2 + 3\alpha\beta + \beta^2 =$
 - A. $\frac{1}{4}$. B. $4\frac{1}{4}$. C. 5. D. 8.

25. If
$$\begin{cases} a^2 + 3a + k = 0 \\ b^2 + 3b + k = 0 \end{cases}$$
, $a \neq b$ and $a^2 + b^2 = 11$, then $k =$

- **26.** It is given that $f(x) = 4x^2 4x + 13$. Which of the following must be true?
 - I. The minimum value of f(x) is 12.
 - II. The axis of symmetry of the graph of

$$y = f(x)$$
 is $x = -\frac{1}{2}$.

- III. The coordinates of the vertex of the graph of y = f(-x) are $\left(-\frac{1}{2}, 12\right)$.
- A. I and II only
- B. I and III only
- C. II and III only
- D. I, II and III
- 27. It is given that the perimeters of two rectangles are 36 m and 44 m respectively. What is the difference between their maximum areas?

A.
$$40 \text{ m}^2$$

B. 64 m^2
C. 81 m^2
D. 121 m^2

END OF PAPER