2017-2018 F.5 2nd TERM UT - MATH - CP 1

17-18 F.5 2nd TERM UT MATH CP PAPER 1

> 2017 – 2018 Form 5 Second Term Examination

MATHEMATICS Compulsory Part

PAPER 1

Question-Answer Book

17th April, 2018. 8:15 am – 9:30 am (1 hour 15 minutes)

This paper must be answered in English.

INSTRUCTIONS

- 1. Write your name, class and class number in the spaces provided on this cover.
- 2. This paper consists of THREE sections, A(1), A(2) and B.
- 3. Attempt ALL questions in this paper. Write your answers in the spaces provided in this Question-Answer Book. Do not write in the margins. Answers written in the margins will not be marked.
- 4. Unless otherwise specified, all working must be clearly shown.
- 5. Unless otherwise specified, numerical answers should be either exact or correct to 3 significant figures.
- 6. The diagrams in this paper are not necessarily drawn to scale.

Section	Marks
A (1 – 3)	
A(4-6)	
A Total	/27
B Total	/33
TOTAL	/60

Section A(1) (9 marks) Simplify $\frac{x^4}{(x^3y^2)^{-2}}$ and express your answer with positive indices. 1. (3 marks) Make *b* the subject of the formula $\frac{1-3b+5a}{b} = 4$. (3 marks) 2. 3. Factorize (a) $4p^2 - 9q^2$, (b) $4p^2 - 9q^2 + 10p - 15q$. (3 marks)

Answers written in the margins will not be marked.

Answers written in the margins will not be marked. 17-18 F.5 2^{nd} TERM UT – MATH – CP 1– 2

Section A(2) (18 marks)

- 4. An inverted right circular conical vessel contains some water. The vessel is held vertically. The depth of water in the vessel is 10 cm. Carl then pours 546π cm³ of water into the vessel without overflowing. He now finds that the depth of water in the vessel is 12 cm.
 - (a) Express the final volume of water in the vessel in terms of π .
 - (b) Carl claims that the final area of the wet curved surface of the vessel is at least 1250 cm². Do you agree? Explain your answer.

(3 marks)

- 5. The coordinates of A and B are (-2, 5) and (6, -7) respectively. P is a moving point in the rectangular coordinate plane such that PA = PB.
 - (a) Describe the locus of *P*.
 - (b) M is a point lying on the locus of P which is the nearest point to A. Q is a moving point such that QM = MA.
 - (i) Find the coordinates of *M*.
 - (ii) Describe the locus of Q.
 - (iii) Find the equation of the locus of Q.

(5 marks)

Answers written in the margins will not be marked.

(1 mark)

—				

marked.
not be
will
margins
the
ш.
written
Answers

- Let \$*C* be the cost of painting a box of surface area $A m^2$. It is given that *C* is the sum of two 6. parts, one part is a constant and the other part varies as A. When A = 3, C = 15; when A = 4, *C* = 18.
 - (a) Find the cost of painting a box of surface area 2 m^2 .

(4 marks)

(b) There is a larger box which is similar to the box described in (a), and the volume of the larger box is 8 times that of the box described in (a). Paul claims that the cost of painting the larger box is 4 times that of painting the box described in (a). Do you agree? Explain your answer.

(3 marks)

ers	written in the marg	ins will not be r	marked		
	nd				

Section B	(33 marks)
-----------	------------

- 7. A string is formed using the letters of the word 'HKDSE'. If no letters can be repeated,
 - (a) how many 5-letter strings can be formed?

(2 marks)

(b) how many 3-letter strings can be formed?

The	probabilities that Tony will pass paper A and paper B a	re 0.7 and 0.4 respectively Assu
that	nis performances on the two papers are independent o	f each other. Find the probability
(a)	he passes paper A but fails paper B,	(2 mar
(b)	he passes both papers,	(2 mar
(c)	he fails at least one paper.	(2 mar

kn Q.	from <i>P</i> . The bearing of <i>R</i> from <i>Q</i> is 171° , a	and R is 2 km from	N 1 km
(a)	Find the distance between <i>P</i> and <i>R</i> .	(3 marks)	P
(b)	Find the bearing of <i>R</i> from <i>P</i> .	(2 marks)	
(c)	At 6 p.m., Steven walks at an average spee along the road <i>PR</i> . When will he reach the (<i>Give the answer correct to the nearest min</i>)	d of 3 km/h from <i>R</i> nearest point to <i>Q</i> ? <i>nute.</i>) (3 marks)	

(a)	ГШ	L the equations of C_1 and L .	(5 111
(b)	$C_1 a$	and L intersect at the points A and B. M is the mid-point of AB .	
	(i)	Express the coordinates of M in terms of k .	
	(ii)	C_2 is a circle with centre <i>M</i> , and the <i>y</i> -axis is a tangent to C_2 . If <i>M</i> I find the equation of C_2 .	ies on the <i>x</i>
			(4 m
ers w	ritten	in the margins will not be marked.	

10. A circle C_1 passes through the origin O and its centre is (-5, 4). The y-intercept and

11. In the figure, the shaded region (including the boundary) is bounded by three straight lines.

- (a) Write down the three inequalities that determine the shaded region. (3 marks)
- (b) Find the coordinates of the vertices of the shaded region.
- (c) Find the maximum and minimum values of the function P = -3x + y subject to the constraints in (a).

(3 marks)

(2 marks)

_			
_			
_			
-			
_			
_			
_			
-			
-			
-			
-			
-			
-			
-			
-			
-			
-			
-			
-			

ot be marked
will n
margins
the
п.
written
Answers

END OF PAPER