

2017 – 2018 Form 5 First Term Uniform Test

MATHEMATICS Compulsory Part

PAPER 2

31st October, 2017. 9:45 am – 10:30 am (45 minutes)

INSTRUCTIONS

- 1. Read carefully the instructions on the Answer Sheet. After the announcement of the start of the examination, you should insert the information required in the spaces provided.
- 2. When told to open this book, you should check that all the questions are there. Look for the words 'END OF PAPER' after the last question.
- 3. All questions carry equal marks.
- 4. **ANSWER ALL QUESTIONS**. You should use an HB pencil to mark all your answers on the Answer Sheet, so that wrong marks can be completely erased with a clean rubber. You must mark the answers clearly; otherwise you will lose marks if the answers cannot be captured.
- 5. You should mark only **ONE** answer for each question. If you mark more than one answer, you will receive **NO MARKS** for that question.
- 6. No marks will be deducted for wrong answers.

There are 11 questions in Section A and 16 questions in Section B. The diagrams in this paper are not necessarily drawn to scale. Choose the best answer for each question.

Section A

1. Simplify
$$\frac{x^2y^2}{x^3y}$$
.
A. xy
B. $\frac{y}{x}$
C. $\frac{x}{y}$
D. $\frac{1}{xy}$

2. If
$$\frac{1}{p} - \frac{1}{q} = \frac{2}{r}$$
, then $q =$
A. $p - \frac{r}{2}$.
B. $\frac{r - 2p}{pr}$.
C. $\frac{pr}{r - 2p}$.
D. $\frac{pr}{r + 2p}$.

3.
$$m^2 + 2m + 1 - 4n^2 =$$

A. $(m - 2n + 1)(m + 2n + 1)$
B. $(m - 2n + 1)(m + 2n - 1)$
C. $(m + 2n + 1)(m + 2n + 1)$

D. (m+2n+1)(m+2n-1)

- 4. In the figure, the ratio of the diameters of the larger semi-circle to that of the smaller semi-circle is 4 : 3. Find the area of the figure.
 - A. $100 \pi \text{ cm}^2$ B. $200 \pi \text{ cm}^2$ C. $(28 \pi + 96) \text{ cm}^2$ D. $(50 \pi + 96) \text{ cm}^2$

- 5. If θ lies in quadrant II, which of the following must be true?
 - I. $\tan(90^\circ \theta) < 0$
 - II. $\sin(180^\circ + \theta) < 0$
 - **III.** $\cos(270^\circ \theta) < 0$
 - A. I and II only
 - **B.** I and III only
 - C. II and III only
 - **D.** I, II and III

6. If
$$\tan \theta = \frac{3}{4}$$
 and $180^{\circ} < \theta < 270^{\circ}$,
 $\cos \theta =$
A. $\frac{4}{5}$.
B. $\frac{3}{5}$.
C. $-\frac{3}{5}$.
D. $-\frac{4}{5}$.

7.
$$\sin(180^\circ - \theta)\cos(360^\circ + \theta)\tan(90^\circ - \theta) =$$

A. $\sin\theta\tan\theta$.

- **B.** $\cos\theta \tan\theta$.
- C. $\sin^2\theta$.
- **D.** $\cos^2 \theta$.
- 8. If a < 0, then the minimum value of $y = \frac{\sin ax}{a}$ is A. $\frac{1}{a}$. B. $-\frac{1}{a}$. C. -1. D. 0.
- 9. Solve the compound inequality $2(x+5) \ge -6$ and 4(x+6) > x-6.
 - A. $x \ge -8$
 - **B.** x > -10
 - **C.** $-10 < x \le -8$
 - **D.** no solutions
- **10.** Which of the following compound inequalities has 'all real numbers' as its solutions?
 - A. x > 2 or x < 0B. x > 0 or x < 2C. x > 2 and x < 0D. x < 2 and x < 0

11. The figure shows the graph of $y = ax^2 + bx + c$. The solutions of $ax^2 + bx + c \ge 0$ are

$$y = ax^{2} + bx + c$$

$$-12 \quad -2 \quad 0 \quad x$$

$$-12 \leq x \leq -2$$

A. $-12 \le x \le -2$. B. -12 < x < -2. C. $x \le -12$ or $x \ge -2$. D. x < -12 or x > -2.

Section B

12. The solutions of
$$x^2 + 7x + 10 > 0$$
 are
A. $x > -5$.
B. $x > -2$.
C. $-5 < x < -2$.
D. $x < -5$ or $x > -2$.

13.
$$(4a^{\frac{3}{2}})^{\frac{-1}{2}} =$$

A. $4a$
B. $2a^{\frac{3}{4}}$
C. $\frac{2}{a^{\frac{3}{4}}}$
D. $\frac{1}{2a^{\frac{3}{4}}}$

14.
$$\sqrt[3]{\frac{2a^{10}}{128a}} =$$

A. $\frac{a^2}{8}$.
B. $\frac{a^3}{8}$.
C. $\frac{a^2}{4}$.
D. $\frac{a^3}{4}$.

- 15. Which of the following graphs has reflectional symmetry with the graph of $y = 5^{-x}$ about the *y*-axis?
 - **A.** graph of $y = -\frac{1}{5^x}$
 - **B.** graph of $y = 5^x$
 - C. graph of $y = -5^x$
 - **D.** graph of $y = \frac{1}{5^x}$

16.
$$\log 20 + \log 50 - \log 10 =$$

- **A.** 2.
- **B.** log 60.
- C. $\log 20 + \log 40$. $\log 70$
- **D.** $\frac{\log 70}{\log 10}$.
- **17.** If $\log_x 8 = y$, then
 - **A.** $x^{y} = 8$
 - **B.** $y^x = 8$

C.
$$v = 8$$

D. $y = x^8$

- 18. Given that $\log 2 = x$ and $\log 3 = y$, express $\log \left(\frac{45}{4}\right)$ in terms of x and y. A. 3x - 2y + 1B. 3x - 2y - 1C. 2y - 3x + 1
 - **D.** 2y 3x 1
- **19.** Suppose *a* and *b* are non-zero real numbers. Which of the following must be real?
 - **I.** $ai \times bi$ **II.** $(a-bi)^2$ **III.** (a-bi)(a+bi)
 - A. I and II only
 - **B.** I and III only
 - C. II and III only
 - **D.** I, II and III

20. Simplify and express $\sqrt{-81} + \sqrt{-36}$ in the form a + bi. A. 3iB. 15iC. 9 + 6i

D. 9-6i

21. Find the values of the real numbers x and y if (4-x)+3yi = (3x-1)-(2y-3)i.

A.
$$x = \frac{-4}{4}$$
 and $y = \frac{-3}{5}$
B. $x = \frac{4}{5}$ and $y = -\frac{3}{5}$
C. $x = -\frac{4}{5}$ and $y = \frac{5}{3}$
D. $x = -\frac{5}{4}$ and $y = -\frac{3}{5}$

22. Solve $\frac{1}{x-1} - \frac{1}{x} = \frac{1}{6}$. A. x = 2B. x = 3C. x = -2 or 3 D. x = -3 or 2

- **D.** x = -5 of 2
- 23. Solve $5\sin x 3\cos x = 0$ for $180^\circ \le x \le 360^\circ$. (Give your answer correct to the nearest degree.)
 - **A.** 193°
 - **B.** 211°
 - **C.** 217°
 - **D.** 233°

25. In the figure, AD = AB and CD = CB. Find the area of *ABCD*, correct to 4 significant figures.

26. In the figure, the compass bearing of R from Q is, correct to the nearest integer.

D. S35°E.

C. 67.69 cm^2

D. 80.90 cm^2

27. In the figure, a ladder PQ of 180 cm leans against an inclined slope PR and makes an angle of 30° with the horizontal. If QR = 40 cm, find the distance between P

END OF PAPER