2017-2018 F. 5 1st TERM UT - MATH - CP 1

17-18 F. 5 $1^{\text {st }}$ TERM UT MATH CP PAPER 1

2017-2018
Form 5 First Term Examination

MATHEMATICS Compulsory Part

PAPER 1

Question-Answer Book

$31^{\text {st }}$ October, 2017.
8:15 am - 9:15 am (1 hour)
This paper must be answered in English.

INSTRUCTIONS

1. Write your name, class and class number in the spaces provided on this cover.
2. This paper consists of THREE sections, $\mathrm{A}(1)$, $\mathrm{A}(2)$ and B .
3. Attempt ALL questions in this paper. Write your answers in the spaces provided in this Question-Answer Book. Do not write in the margins. Answers written in the margins will not be marked.
4. Unless otherwise specified, all working must be clearly shown.
5. Unless otherwise specified, numerical answers should be either exact or correct to 3 significant figures.
6. The diagrams in this paper are not necessarily drawn to scale.

Section	Marks
$\mathrm{A}(1-2,7)$	
$\mathrm{A}(3-6)$	$/ \mathbf{3 0}$
A Total	$/ \mathbf{2 0}$
B Total	
TOTAL	

Section A(1) (13 marks)

1. Simplify $\frac{x^{3}}{\left(x^{-5} y\right)^{4}}$ and express your answer with positive indices.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
2. Make h the subject of the formula $b=\frac{3 h}{h-4}$.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
3. If $\cos \theta=-\frac{3}{4}$, for $0^{\circ} \leq \theta \leq 180^{\circ}$, find $\sin \theta$ and $\tan \theta$. Give the answer in surd form.
\qquad
4. Simplify $\frac{\cos \left(270^{\circ}+\theta\right)}{\sin \left(180^{\circ}+\theta\right)}-\tan \left(90^{\circ}+\theta\right) \tan \theta$.
\qquad

Section A(2) (17 marks)
5. (a) Solve the compound inequality $\frac{15-2 x}{7} \leq 12+3 x$ and $16-8 x>0$. Represent the solutions graphically.
(b) Write down the greatest integers satisfying the compound inequality in (a). (1 mark)
\qquad
6. Let $f(x)=-x^{2}+b x+(b-3)$, where b is a real number.
(a) Express the discriminant of the equation $f(x)=0$ in terms of b.
(b) If $f(x)=0$ has real roots, find the range of values of b.
\qquad
7. As shown in the figure, a portion of metal is cut vertically away from a cylindrical metal bar of base radius 8 cm .
(a) Find the length of $A B$.
(b) Find the length of $\overparen{A C B}$. (Express your answer in terms of π.)
(c) Find the total surface area of the remaining metal bar. (Give your answer correct to 3 significant figures.)
(4 marks)

\qquad

Section B (20 marks)
8. In the figure, O, A and B lie on the same horizontal plane. $O A=3 \mathrm{~m}$ and $O B=5 \mathrm{~m}$. It is given that the bearings of A and B from O are $\mathrm{N} 40^{\circ} \mathrm{W}$ and $\mathrm{N} 35^{\circ} \mathrm{E}$ respectively.
(a) Find the length of $A B$.
(b) Find the true bearing of B from A.
(c) A boy walks from A to B. Peter claims that the distance between the boy and the point O is longer than 2.8 m . Do you agree? Explain your answer.
(3 marks)
\qquad
\qquad
9. An earthquake of Richter scale 6.5 had happened in city A. Two days later, another earthquake of Richter scale 5.4 happened. The energy $E($ in $J)$ and the magnitude M of the earthquake is related by $\log E=1.5 M+4.8$.
(a) Find, correct to 3 significant figures, the ratio of the energies released by the two earthquakes.
(4 marks)
(b) If the energy released in the third earthquake is 5 times the first one, will the magnitude be also 5 times the first one? Explain your answer.
\qquad
10. (a) Solve the equation $(6 x+1)\left(\frac{4}{x}-1\right)=18$.
(b) Hence, solve the equation $(6 \sin \theta+1)\left(\frac{4}{\sin \theta}-1\right)=18$, for $0^{\circ} \leq \theta \leq 360^{\circ}$.
\qquad

