2017-2018 F.5 1st TERM EXAM-MATH-CP 1

17-18 F.5 1st TERM EXAM MATH CP PAPER 1

> 2017 – 2018 Form 5 First Term Examination

MATHEMATICS Compulsory Part

PAPER 1

Question–Answer Book

4th January, 2018 8:15 am – 10:00 am (1 hour 45 minutes) **This paper must be answered in English**

INSTRUCTIONS

- 1. Write your name, class and class number in the spaces provided on this cover.
- This paper consists of THREE sections, A(1), A(2) and B.
- Attempt ALL questions in this paper. Write your answers in the spaces provided in this Question – Answer Book. Do not write in the margins. Answers written in the margins will not be marked.
- 4. Unless otherwise specified, all working must be clearly shown.
- 5. Unless otherwise specified, numerical answers should be either exact or correct to 3 significant figures.
- 6. The diagrams in this paper are not necessarily drawn to scale.

Sections	Marks
A (1 – 4)	
A (5 – 11)	
A Total	/57
B Total	/27
TOTAL	/84

C	tion A(1) (28 marks) Simplify $\frac{(y+y+y+y)^{-3}}{(x^{-2}y^4)^3}$	- and express your answer with positive indices.	(3 marks

2. The figure below shows a sector *OABC* and a semicircle *OAD*. The radius of the sector *OABC* is 40 cm and the angle of the sector *OABC* is 144°. Find the perimeter of the shaded region. Give your answers in terms of π . (3 marks)

$A \qquad D \qquad B \\ 144^{\circ} \qquad O \qquad 40 \text{ cm} C$	
Answers written in the margins wi	Il not be marked.

17-18 F.5 1st TERM EXAM-MATH-CP 1-2

•	Factorize (a) $2\pi^2$ $2\pi\pi$ $5\pi^2$	
	(a) $3p - 2pq - 5q$, (b) $3n^2 - 2nq - 5a^2 - n - q$	
	(0) Sp = 2pq - Sq = p - q.	(3 marks)
		· · · ·
	() $()$ $()$ $()$ $()$ $()$ $()$ $()$	
	(a) Make x the subject of the formula $-+-=\frac{1}{2y}$.	
	(b) If $x: y: z = 2:5:3$, find the value(s) of x satisfying the formula in (a).	
		(5 marks)

	$\frac{5-2x}{2} > 4(x+2) \text{or} 3x+11 \le 0 \dots \dots \dots (*)$	
(s	
s) D	 a) Solve (*). b) Write down the greatest integer satisfying (*). 	
Ų	b) white down the greatest integer substyling ().	(4 marks)
		. ,
•		

6. In the figure, *ABCDE* is a circle. It is given that BA = BC, AB//EC, $\angle CAD = 23^{\circ}$ and $\angle ABD = 75^{\circ}$. Find $\angle BAC$ and $\angle EAD$. (5 marks)

B 75° 23° E A		
···· · · · · · · · · · · · · · · · · ·	1 1 1	

Answers written in the margins will not be marked.

(b)	It is given the range	ven that ge of val	$ax^2 + 1$ ues of k	1x + c =	k has	two di	stinct re	eal roots	, where	k is a c	onstant. Fi
		5									(5 mark

7. The y-intercept of the graph of $y = ax^2 + 11x + c$ is 12, where a and c are constants. It is

Answers written in the margins will not be marked.

given that the graph passes through (-6, 18).

Section A(2) (29 marks)

- 8. (a) Let $f(x) = 10x x^2$. Find the coordinates of the vertex of the graph of y = f(x).
 - (b) In the figure, $\triangle ABC$ is a right-angled triangle with $AB = AC = 10\sqrt{2}$ cm and BQ = x cm. Let A cm² be the area of the rectangle *PQRS*.

- (i) Express A in terms of x.
- (ii) Someone claims that A cannot be greater than 60 cm². Do you agree? Explain your answer.

(4 marks)

(2 marks)

9. In the figure, city A and city B are 50 km apart. At 8:00 a.m., Mr. Chan drives from city A to city C at a constant speed of 60 km/h in a direction of N60°E. At the same time, Mr. Lee drives from city B to city C at a constant speed of x km/h in a direction of N30°W. They both arrive at city C at 8:30 a.m..

(a) (b)	Find the true bearing of city <i>C</i> from city <i>B</i> . Find <i>x</i> .	(1 mark) (3 marks)
(c)	Find the compass bearing of city B from city A .	(3 marks)

ed.
mark
be
not
will
margins
the
in
written
Answers

10. (a) Find the value of k such that 2x-9 is a factor of $8x^3 - 108x + k$. (2 marks) (b) In the figure, a hemispherical container of radius r cm is filled up with water. The water is poured into a cylindrical container of base radius 3 cm. Assume that the depth of the water in the cylindrical container is (r + h) cm. r cm (r+h) cm Answers written in the margins will not be marked Show that $2r^3 - 27r - 27h = 0$. (i) 3 cm (ii) If $h = \frac{9}{4}$, find the value of *r*. (5 marks)

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	

11.	The	e equation of the straight line L_1 is $3x + 4y = 0$.	
	(a)	Let L_2 be the straight line passing through point $A(-7, 3)$ and perpendicular to L_1 .	
		(i) Find the equation of L_2 .	
		(ii) Suppose that G is a point lying on L_2 different from A. Denote the y-coordinate of	
		G by k, where $k \neq 3$. Let C be the circle passing through A with centre G.	
		Prove that the equation of C is $2x^2 + 2y^2 - (3k - 37)x - 4ky + 143 - 9k = 0$.	
		(6 marks)	
	(b)	The coordinates of the point B are $(1, -1)$. Using (a)(ii), or otherwise, find the radius of	2
		the circle which passes through A and B with centre G . (3 marks)	
			ed.
			arke
			e m
			ot b
			ill n
			S M
			rgin
			mai
			the
			l in
			itter
			Wr
			vers
			Vsuv

be marked.
not
will
margins
the
II.
written
Answers

Section B (27 marks)

12. The graph below shows the linear relation between $\log_4 y$ and x. The x-intercept and the intercept on the vertical axis of the graph are 10 and 5 respectively.

Express the relation between x and y in the form $y = Ak^x$, where A and k are constants.

(4 marks)

	,	

(D)	Tienee, solve the equation	(4 marks)

14. In the figure, two circles C_1 and C_2 intersect at A and B. AC and AD are diameters of C_1 and C_2 respectively. AD is the tangent to C_1 at A.

(a) Prove that AC is the tangent to C₂ at A.
(b) If ∠ACB = 30° and AC = 18, find the radius of C₂.

(2 marks) (5 marks) Answers written in the margins will not be marked.

	be marked.
1	Z
	ă
-	_
ż	=
	N
•	margins
-	the
•	II
•	written
	Answers

15. The nutritional values of a fish can and a meat can are shown in the table below.

	Protein(units)	Fat (units)	Iron (units)
Fish can	2	1	1
Meat can	1	3	1

A dog needs a minimum intake of 5 units of protein, 6 units of fat and 4 units of iron per day. Let x and y be the numbers of fish cans and meat cans respectively for a dog per day.

- (a) Write down the system of inequalities that represent the constraints on x and y. Let R be the region of the points representing the ordered pairs (x, y) which satisfy these inequalities. Draw and shade the region R in the figure below. (5 marks)
- (b) It is given that the costs of a fish can and a meat can are \$3.5 and \$4 respectively, find the economical way and the minimum cost to provide the intake for the dog per day.

(3 marks)

(c) If the cost of a fish can increases from \$3.5 to \$4.5, will the minimum cost to provide the intake increase by \$3 per day? Explain your answer. (2 marks)

	be marked.
	Ĕ
_	lnc
÷	=
•	M
•	margins
-	the
•	П
	written
•	Answers

.....

End of Paper	

Answers written in the margins will not be marked. 17-18 F.5 1st TERM EXAM-MATH-CP 1- 20

.....