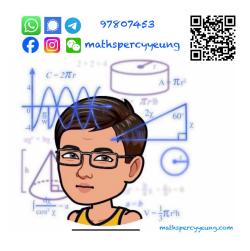


MATHEMATICS

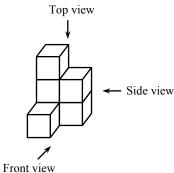

Question-Answer Book

23rd April, 2018 8:15 am – 9:15 am (1 hour)

This paper must be answered in English

INSTRUCTIONS

- 1. Write your name, class and class number in the spaces provided on this cover.
- 2. Attempt ALL questions in this paper. Write your answers in the spaces provided in this Question Answer Book.
- 3. Unless otherwise specified, all working must be clearly shown and numerical answers should be either exact or correct to 3 significant figures.
- 4. The diagrams in this paper are not necessarily drawn to scale.

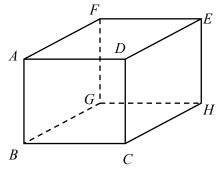


Section	Marks
A (1 - 2)	/8
A (3 - 11)	/42
A Total	/50
B Total	/20
TOTAL	/70

Section A: (50 marks)

In the figure, AOB is a sector with centre O and radius 16 m. C is a point on OB such that $OC = AC$. It is given that $OC = 10$ m. (a) Find $\angle AOB$.	In the figure, find the values of $\sin \theta$, $\cos \theta$ a	(3 ma	
In the figure, AOB is a sector with centre O and radius $16 \text{ m. } C$ is a point on OB such that $OC = AC$. It is given that $OC = 10 \text{ m.}$ (a) Find $\angle AOB$. (b) Find the area of the shaded region.			34 / 31
in the figure, AOB is a sector with centre O and radius 16 m. C is a point on OB such that $OC = AC$. It is given that $OC = 10$ m. (a) Find $\angle AOB$. (b) Find the area of the shaded region.			
in the figure, AOB is a sector with centre O and radius 16 m. C is a point on OB such that $OC = AC$. It is given that $OC = 10$ m. (a) Find $\angle AOB$. (b) Find the area of the shaded region.			
in the figure, AOB is a sector with centre O and radius 16 m. C is a point on OB such that $OC = AC$. It is given that $OC = 10$ m. (a) Find $\angle AOB$. (b) Find the area of the shaded region.			
in the figure, AOB is a sector with centre O and radius 16 m. C is a point on OB such that $OC = AC$. It is given that $OC = 10$ m. (a) Find $\angle AOB$. (b) Find the area of the shaded region.			
in the figure, AOB is a sector with centre O and radius 16 m. C is a point on OB such that $OC = AC$. It is given that $OC = 10$ m. (a) Find $\angle AOB$. (b) Find the area of the shaded region.			
a point on OB such that $OC = AC$. It is given that $OC = 10$ m. (a) Find $\angle AOB$. (b) Find the area of the shaded region.			D
 (a) Find ∠AOB. (b) Find the area of the shaded region. 			
(b) Find the area of the shaded region. (5 marks)		that OC 10 m.	
(5 marks)			X X
(3 marks) O 16 m	(b) This the area of the shades region.	(5 marks)	
		(5 marks)	O 16 m

3. The figure shows a solid formed by some identical cubes. Draw the orthographic projections of the solid.



(4 marks)

	Fro	nt v	iew	То	p vie	ew	Sic	le vi	ew	

- 4. In the figure, *ABCDEFGH* is a cuboid.
 - (a) Name the angle between line BD and plane ADEF.
 - (b) Name the angle between line AH and plane CDEH.
 - (c) Name the angle between planes ABGF and ADEF.
 - (d) Name the angle between planes ADEF and BCEF.

(4 marks)

(a) Find <i>DE</i>.(b) Find ∠<i>BAC</i>.				419	E
		(4 ma	arks)	D	
					57°
					cm
			<i>D</i>	13	CIII
In the figure, <i>EAB</i>	is a straight line.	ABCD is a paralle	elogram. <i>EC</i>	intersects A	1D at F. EB =
			elogram. <i>EC</i>	intersects A	1D at F. EB =
		ABCD is a parallo	elogram. <i>EC</i>	-	1D at F. EB =
				-	1D at F. EB =
				E	AD at F . $EB = \frac{F}{y}$
In the figure, EAB and $\angle BAD = 128^{\circ}$.				E	AD at F . $EB = \frac{F}{C}$
				E	AD at F . $EB = \frac{F}{C}$
				E	AD at F . $EB = \frac{F}{C}$
				E	AD at F . $EB = \frac{F}{C}$
				E	AD at F . $EB = \frac{F}{C}$
				E	AD at F . $EB = \frac{F}{C}$
				E	AD at F . $EB = \frac{F}{C}$
				E	AD at F . $EB = \frac{F}{C}$

) Find the height of the p) Find the volume of the		(5 mark	s)		
			(5 mark	s)	//	1,1-
					/ '	
					D_{I}	
					0	٧
				A	16 cm	B N
						<i>D</i>
pı	risms P and Q are 128 cn		respectively.			
	area =	= 32 cm ²		area = y cm²		
		< 1.)		1	
		P		(Q	
(2	a) Find the ratio of the b	ase diameter	of prism P to	that of prism	n <i>Q</i> .	
•	b) Find the value of y.		1	1	~	
(ι	b) Tind the value of y.					(5
						(5 ma
				,		

Sandy has a paper sector AOB as shown in the figure. The radius of the	sector is 17 cm
Reflex $\angle AOB = 216^{\circ}$. By joining OA and OB together, the sector is folded	d to form a righ
circular cone.	В
(a) Find the base radius of the cone.	(3 marks)
(b) Find the volume of the cone, correct to the nearest integer.	(3 marks)

9.

l)	Show that $\triangle ABC$ is a right-angled triangle.		A(4, 8)
)	Find the area of $\triangle ABC$.		
,		(5 marks)	B(-2,2)
		,	0
			1
			C(6,-6)

11.	In tl	the figure, PQ is a diameter of the circle.								
	(a)	Find the coordinates of the centre of the circle.	24.7							
	(b)	It is given that $R(-5, 7)$ and S are the end points of the	Q (1, 7)							
		diameter RS of the circle. Find the coordinates of S .								
		(5 marks)								
			P (-5, 3)							
			$\longrightarrow x$							

Section B: (20 marks)

12.	The (a) (b)		(3 marks)
		→ ()	
		(i) Find the radius of each small sphere.	
		(ii) Find the increase in the total surface area in terms of π .	
			(7 marks)

13.	In the figure, L_1 is the straight line passing through $A(6, 2)$ and $B(8, 1)$. It cuts the x-a	axis at C.
	(a) Find the slope of I	(2 mortes)
	(a) Find the slope of L₁.(b) Find the coordinates of C.	(2 marks) (4 marks)
	(c) Given that D is a point on the x -axis so that $AD \perp L_1$, find the coordinates of D .	(i mariis)
		(4 marks)
	End of Paper	