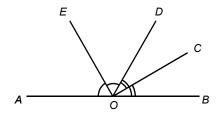
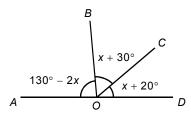
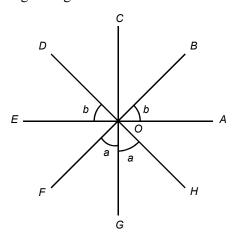

Chapter 5 Introduction to Deductive Geometry

Multiple Choice Section

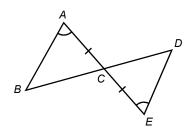

1. In the figure, AOB, COD and EOF are straight lines, $\angle EOB = 90^{\circ}$. Which of the following must be correct?


- A. x = y
- B. $x + y = 45^{\circ}$
- C. $x + y = 90^{\circ}$
- D. None of the above

2. In the figure, AOB is a straight line. OE and OC are the angle bisectors of $\angle AOD$ and $\angle BOD$ respectively. Which of the following must be a right angle?

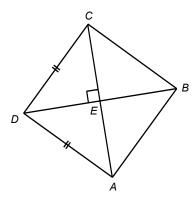


- A. $\angle AOD$
- B. $\angle EOC$
- C. $\angle DOB$
- D. None of the above
- 3. In the figure, which of the following must be correct?

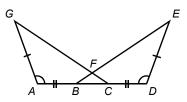


- A. $x = 20^{\circ}$
- B. $\angle AOB = \angle BOD$

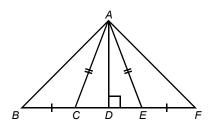
- C. $\angle AOB$ is a right angle.
- D. AOD is a straight line.
- **4.** In the figure, AOE, BOF, COG and DOH are straight lines. Which of the following must be a right angle?



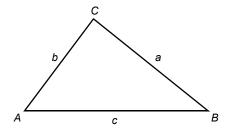
- I. ∠AOC
- II. ∠BOH
- III. ∠COE
- A. I and II only
- B. II and III only
- C. I and III only
- D. I, II and III
- 5. In the figure, AE and BD intersect at C, AC = EC and $\angle BAC = \angle DEC$. Which of the following must be correct?



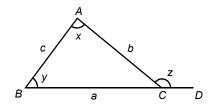
- A. AB = CD
- B. CD = DE
- C. DE = BC
- D. BC = DC
- **6.** In the figure, CA and DB intersect at E, $CA \perp DB$ and CD = AD. Which of the following must be


correct?

- I. $\angle CDE = \angle ADE$
- II. $\angle DEA = \angle BEC$
- III. BD bisects $\angle ABC$.
- IV. AC bisects $\angle DCB$.
- A. I and II only
- B. II and III only
- C. I, II and III only
- $D. \ \ I, \ II, \ III \ and \ IV$
- 7. In the figure, ABCD, GFC and EFB are straight lines, $\angle GAC = \angle EDB$, AB = DC and AG = DE. What type of triangle is $\triangle BCF$?

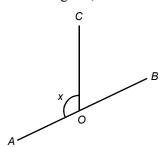


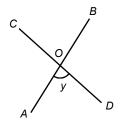
- A. An isosceles triangle
- B. An equilateral triangle
- C. An irregular triangle
- D. It cannot be determined.
- **8.** In the figure, BCDEF is a straight line, BC = FE, AC = AE and $AD \perp BF$. Which of the following must be correct?



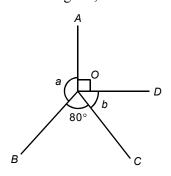
I. $\Delta ACD \cong \Delta AED$

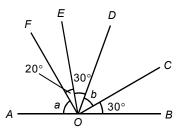
- II. $\triangle ACB \cong \triangle AEF$
- III. $\triangle ADB \cong \triangle ADF$
- A. I only
- B. II only
- C. I and II only
- D. I, II and III
- **9.** The figure shows $\triangle ABC$. Which of the following must be correct?


- I. $a^2 + b^2 = c^2$
- II. The perimeter of $\triangle ABC$ is less than 2(a + b).
- III. The perimeter of $\triangle ABC$ is greater than 2c.
- A. I only
- B. II only
- C. II and III only
- D. I, II and III
- **10.** In the figure, ABC is a triangle and BC is produced to D. Which of the following must be correct?

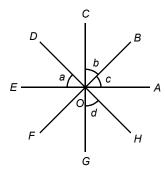

- I. z > x
- II. a > b + c
- III. If a > b, then x < y.
- A. I only
- B. II only
- C. I and II only
- D. I, II and III

Section A(1)

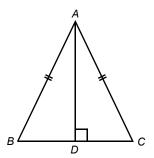

1. In the figure, AOB is a straight line. Express $\angle COB$ in terms of x.


2. In the figure, AOB and COD are straight lines. Express $\angle COB$ in terms of y.

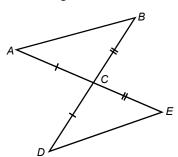
3. In the figure, $\angle AOD = 90^{\circ}$ and $\angle BOC = 80^{\circ}$. Prove that $a + b = 190^{\circ}$.

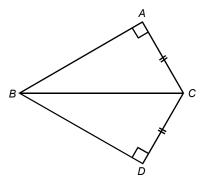


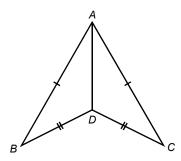
4. In the figure, AOB is a straight line. Prove that $a + b = 100^{\circ}$.

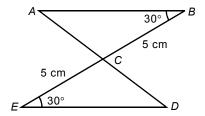


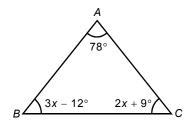
5. In the figure, AOE, BOF, COG and DOH are straight lines.

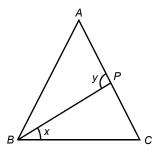

Prove that $a + b + c + d = 180^{\circ}$.

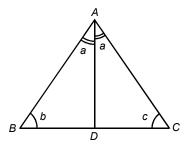

6. In the figure, BDC is a straight line and AB = AC. Prove that $\angle ABD = \angle ACD$.

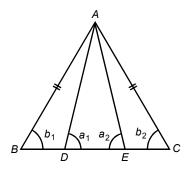

7. In the figure, AE and BD intersect at C, AC = DC and BC = EC. Prove that AB = DE.

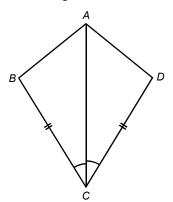

8. In the figure, $\angle BAC = \angle BDC = 90^{\circ}$ and AC = DC. Prove that BC bisects $\angle ABD$.

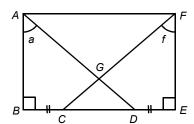

9. In the figure, AB = AC and BD = CD. Prove that $\triangle ABD \cong \triangle ACD$.

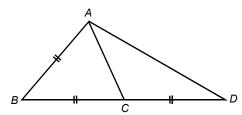

10. In the figure, ACD and BCE are straight lines, $\angle ABC = \angle CED = 30^{\circ}$ and BC = CE = 5 cm. Prove that AB = DE.


11. In the figure, prove that $\triangle ABC$ is an isosceles triangle.


12. In the figure, AB = AC and BP bisects $\angle ABC$. Prove that y = 3x.


13. In the figure, BDC is a straight line. $\angle BAD = \angle CAD = a$ and b = c. Prove that $AD \perp BC$.

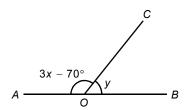

14. In the figure, BDEC is a straight line. AB = AC and $a_1 = a_2$. Prove that BE = CD.


15. In the figure, AC bisects $\angle BCD$ and BC = DC. Prove that $\triangle BCA \cong \triangle DCA$.

16. In the figure, BCDE, AGD and FGC are straight lines. $\angle ABE = \angle FEB = 90^{\circ}$, a = f and BC = ED. Prove that AD = FC.

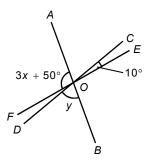
17. In $\triangle ABD$, C is the mid-point of BD and AB = BC. Prove that 3AB > AD.

18. Construct a right-angled triangle with a as its hypotenuse and b as an adjacent side with proof.

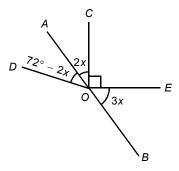


19. Construct a right-angled triangle with a and b as the adjacent sides with proof.

a	b	

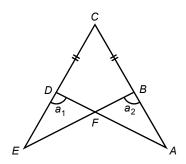

Section A(2)

20. In the figure, AOB is a straight line. Express y in terms of x.

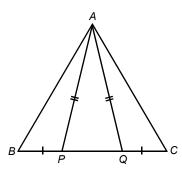


21. In the figure, prove that AOD is a straight line.

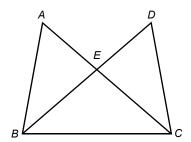
22. In the figure, AOB, COD and EOF are straight lines. Prove that $y = 120^{\circ} - 3x$.

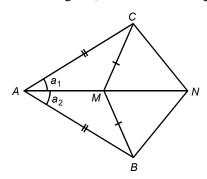


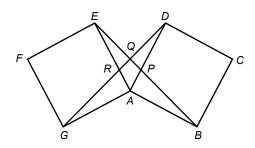
23. In the figure, $\angle AOD = \angle AOC$ and $\angle COE = 90^{\circ}$.



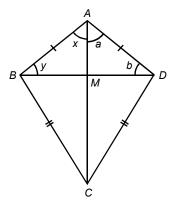
- (a) Find x.
- **(b)** Prove that *AOB* is a straight line.


24. In the figure, CDE, CBA, DFA and BFE are straight lines, DC = BC and $a_1 = a_2$. Prove that $\triangle ADC \cong \triangle EBC$.


25. In the figure, BPQC is a straight line, BP = CQ and AP = AQ.


- (a) Prove that $\angle APB = \angle AQC$.
- **(b)** Prove that $\triangle APB \cong \triangle AQC$.
- **26.** In the figure, AEC and DEB are straight lines, AB = DC and AC = DB.

- (a) Prove that $\triangle ABC \cong \triangle DCB$.
- (b) Prove that $\triangle EBC$ is an isosceles triangle.
- **27.** In the figure, AMN is a straight line, AB = AC and BM = CM.


- (a) Prove that $a_1 = a_2$.
- **(b)** Prove that CN = BN.
- 28. In the figure, ABCD and AEFG are two identical squares. EQPB and DQRG are straight lines.

- (a) Prove that $\Delta EAB \cong \Delta DAG$.
- **(b)** Prove that EB = DG.

Section B

29. In the figure, ABCD is a quadrilateral. The diagonals AC and BD intersect at M. AB = AD and BC = DC.

- (a) Prove that x = a.
- **(b)** Prove that $x + y = 90^{\circ}$.