In the figure, a straight line cuts the x-axis and the y-axis at $A(-6,0)$ and $B(0,8)$ respectively. If M is the mid-point of $A B$, find the coordinates of M.

In the figure, the diagonals of the square $A B C D$ intersect at K. Find the coordinates of K.

In the figure, $A B C$ is a straight line and $A B=B C$. Find the coordinates of A.

In the figure, $A B C$ is a straight line and $A B=B C$. Find the values of a and b.

In the figure, $B(-5,1)$ is the mid-point of the line segment joining A and $C(-7,-4) . D$ is a point on $A E$ such that $B D / / C E$. Find the coordinates of A and D.

P is a point lying on the line segment joining $A(-3,-4)$ and $B(7,8)$, where $A P: P B=3: 2$. Find the coordinates of P.

The figure shows two points $P(-12,-9)$ and $Q(-8,-7)$. If R is a point on $P Q$ produced such that $P Q: Q R=$ $1: 4$, find the coordinates of R.

In the figure, $B C$ cuts the x-axis at D. E is a point on $A C$ such that $B A / / D E$.

(a) Find $B D: D C$.
(b) Find the coordinates of E.

In the figure, $O A B C$ is a parallelogram. Prove by the analytic approach that $O B^{2}+A C^{2}=2\left(O A^{2}+O C^{2}\right)$.

In the figure, $O A B C$ is a square. D is the mid-point of $A B . E$ is a point on $C B$ such that $C E: E B=3: 1$.

(a) Let $O A=a$. Express the coordinates of A, B, C, D and E in terms of a.
(b) (i) Hence, prove by the analytic approach that $O E^{2}=O D^{2}+D E^{2}$.
(ii) State what kind of $\triangle O D E$ is.

In the figure, the line joining $A(2,11)$ and $B(9,3)$ intersects the line joining $C(1,4)$ and D at $K(k, 5)$.

If $A K: K B=C K: K D=m: n$, find
(a) $m: n$,
(b) the coordinates of D.

In the figure, O is the centre of the circle with radius r and $P(a, b)$ is a point on the circle.
(a) Prove that $a^{2}+b^{2}=r^{2}$.
(b) Prove by the analytic approach that $A P \perp P B$.

Refer to the figure.

(a) Find the length of $A B$.
(b) Find the slope of $A B$.

Refer to the figure.

(a) Find the length of $P Q$.
(b) Find the slope of $P Q$.

The figure shows a straight line L with inclination 38°. Find the slope of L correct to 3 significant figures.

It is given that the slope of a straight line L is 1 .
(a) Find the inclination of L.
(b) If L passes through a point P as shown below, draw the straight line L and mark its inclination in the figure.

Refer to the figure.

(a) Find the perimeter of $\triangle A B C$.
(b) Show that $\triangle A B C$ is a right-angled triangle.

In the figure, $P(1,3), Q(3,1)$ and $R(5, a)$ are three points above the x-axis and $P Q=Q R$.

(a) Find the value of a.
(b) Find the area of $\triangle P Q R$.

In the figure, $A(4,0)$ and $C(0,8)$ are points on the x-axis and the y-axis respectively. B is a point such that $A B / / O C$ and $A B=C B$.

(a) Find the coordinates of B.
(b) Find the area of quadrilateral $O A B C$.

In each of the following, determine whether the three points are collinear.
(a) $A(-4,-1), B(-2,1)$ and $C(3,6)$
(b) $D(5,2), E(8,-4)$ and $F(10,-7)$

In the figure, the straight line L passes through $A(3,2), B(6,4)$ and $C(9, k)$.

(a) Find the value of k.
(b) Does $P(12,6)$ lie on the straight line L ? Explain your answer.

Referring to the figure, $A B$ cuts the x-axis at P.

(a) Find the coordinates of P.
(b) Find $A P: P B$.

In the figure, $A(2,0)$ and $B(3, \sqrt{3})$ are two points on a rectangular coordinate plane.

(a) Find the slope and the inclination of
(i) $O B$,
(ii) $A B$.
(b) (i) Find $\angle A B O$.
(ii) State what kind of triangle $O A B$ is.

Referring to the figure, determine whether $A B$ and $C D$ are perpendicular to $P Q$.

Refer to the figure.

(a) Show that $A B$ and $C D$ are not parallel.
(b) If B is translated upwards by k unit(s) to B^{\prime} such that $A B^{\prime} / / C D$, find the value of k.

In the figure, A and C are points on the x-axis and the y-axis respectively. $O A B C$ is a square. Its diagonals $O B$ and $A C$ intersect at $M(4, m)$.

(a) Find the value of m.
(b) Find the coordinates of A, B and C.

Referring to the figure, A is a point on the y-axis such that $A B / / D C$.

(a) Find the coordinates of A.
(b) Show that $A B C D$ is a rectangle.

In the figure, M is the mid-point of the line segment joining $A(1,8)$ and $B(7,2)$. Find the coordinates of M.

In the figure, $P(-9,-3)$ and $Q(5,-5)$ are the end points of the line segment $P Q$. If M is the mid-point of $P Q$, find the coordinates of M.

Given that a point P bisects the line segment joining $A(-6,7)$ and $B(1,-3)$, find the coordinates of P.

It is given that P is the mid-point of the line segment joining $A(0,10)$ and $B(-8,14)$.
(a) Find the coordinates of P.
(b) If Q is the mid-point of $P B$, find the coordinates of Q.

Referring to the figure, M is the mid-point of $P Q$. Find the coordinates of Q.

Referring to the figure, N is the mid-point of $C D$. Find the coordinates of C.

Given that $M(3,6)$ is the mid-point of the line segment joining $A(a,-4)$ and $B(7, b)$, find the values of a and b.

Given that a point $P(7,-1)$ bisects the line segment joining $C(2, c)$ and $D(d, 4)$, find the values of c and d.

Given that the line segment joining $A(4,5)$ and $M(7,9)$ is produced to a point B and $A M=M B$, find the coordinates of B.

It is given that $N(-8,3)$ divides the line segment joining C and $D(-4,-3)$ into 2 equal parts.
(a) Find the coordinates of C.
(b) If C is the mid-point of $B N$, find the coordinates of B.

Referring to the figure, the mid-point M of $A B$ lies on the y-axis. Find the value of b and the coordinates of M.

In the figure, the line segment joining $C(-9, c)$ and $D(-3,-5)$ cuts the x-axis at N, where $C N=N D$. Find the value of c and the coordinates of N.

In the figure, Q is a point on the y-axis. $M(-5,-7)$ is the mid-point of the line segment joining $P(p,-2)$ and Q. Find the value of p and the coordinates of Q.

Referring to the figure, $A B$ is produced to meet the x-axis at C and $A B=B C$. Find the value of a and the coordinates of C.

Referring to the figure, $O M$ is the perpendicular bisector of $A B$ in $\triangle O A B$.

(a) Find the coordinates of A.
(b) Find the area of $\triangle O A B$.

Referring to the figure, $P Q$ is a diameter of a circle.

(a) Find the coordinates of the centre C of the circle.
(b) It is given that $R(-5,7)$ and S are the end points of the diameter $R S$ of the circle. Find the coordinates of S.

Referring to the figure, $A B C D$ is a right-angled trapezium, where $A D / / B C$ and $\angle A B C=90^{\circ} . P$ is the mid-point of $C D$.

(a) Find the values of c and d.
(b) Find the coordinates of A.
(c) Find the ratio of the area of $\triangle A B P$ to that of trapezium $A B C D$.

The figure shows two points $A(-2,-4)$ and $B(4,5)$. P lies on $A B$ such that $A P: P B=2: 1$. Find the coordinates of P.

In the figure, P is a point on the line segment joining $C(-5,9)$ and $D(10,-1)$ such that $C P: P D=3: 2$. Find the coordinates of P.

In the figure, the coordinates of an end point P of the line segment $P Q$ are $(2,11) . M(11,5)$ lies on $P Q$ such that $P M: M Q=3: 1$. Find the coordinates of Q.

Referring to the figure, P is a point on $A B$ such that $A P: P B=1: 4$. Find the coordinates of A.

Given that $Q(0,4)$ divides the line segment joining $P(-10,-1)$ and $R(2,5)$ into two parts, find $P Q: Q R$.

Given that $T(6,2)$ lies on the line segment joining $P(8,-5)$ and $Q\left(\frac{36}{7}, 5\right)$, find $P T: T Q$.

In the figure, the line segment joining $A(-4,9)$ and $B(b, 2)$ cuts the y-axis at P and $A P: P B=2: 5$. Find the value of b and the coordinates of P.

Referring to the figure, $C Q$ is produced to meet the x-axis at D and $C Q: Q D=2: 3$. Find the value of c and the coordinates of D.

Referring to the figure, $A D$ and $B C$ intersect at K, where $A K: K D=2: 3$ and $B K: K C=4: 1$.

(a) Find the coordinates of K.
(b) Find the values of b and c.
(c) Consider the line segments $A K, K D, B K$ and $K C$. Which one is the shortest?

Referring to the figure, $A B C D$ is a parallelogram. P is a point on $B C$ such that $A P \perp B C$ and $B P: P C=1: 3$.

(a) Find the coordinates of A and B.
(b) Find the area of parallelogram $A B C D$.

In the figure, the coordinates of A and B are $(a, 0)$ and $(0, b)$ respectively. If M is the mid-point of $A B$, prove that $O M=\frac{1}{2} A B$.

In the figure, the coordinates of A and B are $(a, 0)$ and (b, c) respectively. P and Q are points on $O B$ and $A B$ respectively such that $O P: P B=A Q: Q B=2: 1$.

(a) Express the coordinates of P and Q in terms of a, b and c.
(b) (i) Prove that $P Q / / O A$.
(ii) Prove that $P Q=\frac{1}{3} O A$.

In the figure, $O A B C$ is a rectangle, where $O A=a$ units and $O C=c$ units. P, Q, R and S are the mid-points of $O A, A B, B C$ and $O C$ respectively. Prove that $P Q R S$ is a rhombus.

In the figure, M is a point on the x-axis. $O M$ is the perpendicular bisector of $A B$ in $\triangle O A B$. Prove that $\triangle O A B$ is an isosceles triangle by the analytic approach.

In the figure, the coordinates of A and B are $(r, 0)$ and (s, t) respectively. If $O A^{2}=O B^{2}+A B^{2}$, prove that $\angle O B A=90^{\circ}$ by the analytic approach.

In the figure, A and B are points on the x-axis and the y-axis respectively. $M(-6,5)$ is the mid-point of $A B$.

(a) Find the coordinates of A and B.
(b) Is $O M$ perpendicular to $A B$? Explain your answer.

In the figure, A and D are two points on the y-axis. B and C are two points on the x-axis. $M(3,4)$ and $N(-3,-4)$ are the mid-points of $A B$ and $C D$ respectively.

(a) Find the coordinates of A, B, C and D.
(b) Determine whether $A B$ and $C D$ are parallel.

Referring to the figure, P and Q are points on the y-axis and the x-axis respectively. P and Q divide $A B$ into 3 equal parts.

(a) Find the coordinates of P, Q and B.
(b) Find the length of $A B$.

Referring to the figure, B and M are points on the x-axis and the y-axis respectively. $A B$ is a diameter of a circle with centre M.

(a) Find the coordinates of M and B.
(b) If P is a point on the negative x-axis such that $\angle A P B=90^{\circ}$, show that P lies on the circle.

Referring to the figure, P and Q are the mid-points of $A B$ and $A C$ respectively.

(a) Find the coordinates of B and C.
(b) (i) Find the slopes of $P Q$ and $B C$.
(ii) Hence, determine whether $P Q$ is parallel to $B C$.

In the figure, the line segment joining $A(10,-8)$ and $B(6, y)$ cuts the x-axis at D, where $A D=D B$. The line segment joining A and $C(x,-2)$ cuts the y-axis at E, where $A E=E C$.

(a) (i) Find the value of x and the coordinates of E.
(ii) Find the value of y and the coordinates of D.
(b) Show that $D E=\frac{1}{2} B C$.

In the figure, $A(9,7), B(-1,5), C(-3,-5)$ and $D(7,-3)$ are the vertices of a quadrilateral. E, F, G and H are the mid-points of $A B, B C, C D$ and $D A$ respectively.

(a) Find the coordinates of E, F, G and H.
(b) Show that $E F G H$ is a rectangle.

Referring to the figure, K bisects both the line segments $A B$ and $C D$. Find the coordinates of A and K.

Referring to the figure, $P Q R S$ is a parallelogram and its diagonals intersect at M. Find the coordinates of P, M and R.

Referring to the figure, $A M$ is produced to meet the y-axis at B and $A M=M B . N$ is a point on the x-axis such that $N M \perp A B$.

(a) Find the value of m and the coordinates of B.
(b) Find the coordinates of N.
(c) If C and D are points on the x-axis such that $A C / / M N / / B D$,
(i) find the coordinates of C and D,
(ii) determine whether N is the mid-point of $D C$.

In the figure, the coordinates of P are $(5,3)$ and B lies on the x-axis. $O P$ is the median of $A B$ in $\triangle A O B$ and its area is 21 sq. units. Find the coordinates of A and B.

In the figure, the coordinates of A and B are $(-7,9)$ and $(-2,-1)$ respectively. $P(p, 3)$ is a point on $A B$.

(a) Find $A P: P B$.
(b) Hence, find the value of p.

In the figure, the coordinates of A and B are $(-6,4)$ and $(6,10)$ respectively. P and Q divide $A B$ into 3 equal parts. Find the coordinates of P and Q.

In the figure, the coordinates of C and D are $(-3,5)$ and $(9,-7)$ respectively. R and S are two points on $C D$ such that $C R: R S: S D=1: 2: 3$. Find the coordinates of R and S.

In the figure, the line segment joining $A(-5,-2)$ and $B(8,11)$ cuts the x-axis and the y-axis at P and Q respectively.

(a) (i) Find $A Q: Q B$.
(ii) Hence, find the coordinates of Q.
(b) (i) Find $A P: P Q$.
(ii) Hence, find the coordinates of P.
(c) Find $A P: P Q: Q B$.

In the figure, $A(2,3), B(12,-2), C(15,4)$ and $D(5,9)$ are the vertices of a quadrilateral. E and F are points on $A B$ and $C D$ respectively, such that $A E: E B=C F: F D=4: 1$.

(a) Find the coordinates of E and F.
(b) Show that $A E C F$ is a parallelogram.

Referring to the figure, $A C$ cuts the y-axis at Q and $A Q=Q C . P$ lies on $A B$ and $A B \perp A C$.

(a) Find the value of c and the coordinates of Q.
(b) Find the values of b and p.
(c) Find $A P: P B$.

In the figure, $A(-4,3), B(-6,-4)$ and C are the vertices of a triangle. $A C$ cuts the x-axis and the y-axis at P and Q respectively. $B C$ cuts the y-axis at R. If $A P: P C=1: 3$ and $B R: R C=3: 2$, find the coordinates of (a) C,
(b) P, Q and R.

In the figure, the line segment joining $A(-15,8)$ and D cuts the x-axis at B and the y-axis at C. If $A B: B C$: $C D=4: 1: 2$, find the coordinates of B, C and D.

In the figure, $A B C D$ is a trapezium, where $A D / / B C . M, N, P$ and Q are the mid-points of $A B, B C, C D$ and $D A$ respectively. Prove that $M N P Q$ is a parallelogram by the analytic approach.

It is given that $O A B C$ is a square of side a units. P, Q, R and S are points on $O A, A B, B C$ and $C O$ respectively, such that $O P: P A=A Q: Q B=B R: R C=C S: S O=1: 2$. Prove that $P R$ and $Q S$ bisect each other by the analytic approach.

In the figure, $A B C D$ is a rhombus. M is the mid-point of $C D$. If $A M=B M$, prove that $A B C D$ is a square by the analytic approach.

In the figure, the coordinates of B, C and D are $(6,8),(-2.4,6.8)$ and $(5.6,0.8)$ respectively. $O B$ and $C D$ intersect at P, where $O P: P B=1: r$ and $C P: P D=s: 1$.

(a) Find the values of r and s.
(b) Show that $O P=P D$ and $C P=P B$.

In the figure, P is the mid-point of the line segment joining $A(2,6)$ and $C(10,8)$. $Q(8,3)$ bisects the line segment $B C . A Q$ and $B P$ intersect at K.

(a) Find the coordinates of B, K and P.
(b) Find the area of quadrilateral $C P K Q$.

In the figure, A and D are points on the y-axis and the x-axis respectively. B and C lie on $A D$, such that $O B \perp A D$ and $O B$ is the angle bisector of $\angle A O C . A D$ is produced to $E(-60,10)$ and $A D: D E=2: 1$.

(a) Find the coordinates of A, B, C and D.
(b) Find $A B: B C: C D: D E$.

Prove that the three altitudes of an acute-angled triangle intersect at one point by the analytic approach.

In the figure, G is the centroid of $\triangle P Q R$. Prove that $P G: G D=Q G: G E=R G: G F=2: 1$ by the analytic approach.

In the figure, $\triangle A B C$ is an isosceles triangle, where $A B=A C . K$ is the circumcentre of $\triangle A B C$. Prove that K is the orthocentre of $\triangle D E F$ by the analytic approach.

In the figure, $\triangle A_{1} B_{1} C_{1}$ is an right-angled isosceles triangle, where $\angle A_{1}=90^{\circ}$ and $A_{1} B_{1}=A_{1} C_{1}=k$ units. $\triangle A_{2} B_{2} C_{2}$ is formed by joining the mid-points of the sides of $\triangle A_{1} B_{1} C_{1} . \triangle A_{3} B_{3} C_{3}$ is formed by joining the mid-points of the sides of $\triangle A_{2} B_{2} C_{2}$.

(a) Prove that $\triangle A_{2} B_{2} C_{2}$ and $\triangle A_{3} B_{3} C_{3}$ are also right-angled isosceles triangles by the analytic approach.
(b) Find the areas of $\triangle A_{1} B_{1} C_{1}, \triangle A_{2} B_{2} C_{2}$ and $\triangle A_{3} B_{3} C_{3}$ in terms of k.
(c) It is given that a fourth right-angled isosceles triangle $A_{4} B_{4} C_{4}$ is formed by joining the mid-points of the sides of $\triangle A_{3} B_{3} C_{3}$, and this process is continued to form an infinite number of right-angled isosceles triangles. Find the areas of $\triangle A_{4} B_{4} C_{4}$ and $\triangle A_{5} B_{5} C_{5}$ in terms of k.
(Hint: The areas of the triangles form a sequence with a pattern.)

