In each of the following, find the distance between the two given points.
(a) $A(-8,-2)$ and $B(-4,0)$
(b) $P(2 a,-5 a)$ and $Q(7 a, 7 a)$
(Leave your answers in surd form if necessary.)

It is given that $P(0,2), Q(2,8)$ and $R(8,6)$ are the vertices of $\triangle P Q R$.
(a) Is $\triangle P Q R$ an isosceles triangles? Explain your answer.
(b) Is $\triangle P Q R$ a right-angled triangle? Explain your answer.
(c) Find $\angle P Q R$.

The figure shows a quadrilateral $A B C D$ on a rectangular coordinate plane.

(a) Show that $\triangle A B C$ and $\triangle A D C$ are right-angled triangles.
(b) Are the perimeters of $\triangle A B C$ and $\triangle A D C$ equal? Explain your answer.
(c) Are the areas of $\triangle A B C$ and $\triangle A D C$ equal? Explain your answer.

In each of the following, find the slope of the straight line passing through the two given points on the rectangular coordinate plane.
(a) $P(-2,5)$ and $Q(6,8)$
(b) $R(5,0)$ and $S(0,-6)$

In each of the following, find the slope of the straight line passing through the two given points on the rectangular coordinate plane.
(a) $T(1,-2)$ and $U(5,-4)$
(b) $V(-2,-1)$ and $W(-6,3)$

In the figure, $R(-4,-1), S(-3,-4)$ and $T(5,5)$ are three points on the same rectangular coordinate plane.

(a) Find the slopes of $R T$ and $S T$.
(b) Which line, $R T$ or $S T$, has a greater slope?
(c) Which line, $R T$ or $S T$, is steeper?

Given that the slope of the straight line passing through $R(6,-3)$ and $S(b, 4)$ is -1 , find the value of b.

Prove that the three points $P(5,-4), Q(-3,8)$ and $R(1,2)$ on the rectangular coordinate plane are collinear.

Given that $A(6,-4), B(-2,6)$ and $C(1, d)$ are three points on a straight line. Find the value of d.

Find the slope of L in the figure correct to 3 significant figures.

In the figure, the slope of L is $\frac{2}{3}$. Find α correct to 3 significant figures.

A straight line L passes through $A(2,-1)$ and $B(-6,-8)$. Find the inclination of L correct to 3 significant figures.

Given two points $A(7,2)$ and $B(5,5) . C$ is a point on the y-axis such that $C B / / O A$. Find the coordinates of C.

In the figure, $P(-4,3), Q(-2,-4), R\left(k,-\frac{17}{2}\right)$ and $S(1,2)$ are four points on a rectangular coordinate plane, where $P Q / / R S$.

(a) Find the value of k.
(b) Is $P Q R S$ a parallelogram? Give your reason.

Given four points $P(-1, t), Q(4,-3), R(0,1)$ and $S(2 t,-3)$. If $P Q \perp R S$, find t.

In the figure, A lies on the y-axis and $\angle A B C=90^{\circ}$. The slope of $A B$ is $\frac{3}{2}$.

(a) Find the coordinates of A.
(b) Find the value of y.

In the figure, $A(-2,7), B(3,2)$ and $C(9,5)$ are three points on the same rectangular coordinate plane.

(a) Find the slopes of $A B$ and $B C$.
(b) Which line, $A B$ or $B C$, has a greater slope?
(c) Which line, $A B$ or $B C$, is steeper?

In the figure, $B(8,0)$ is a vertex of $\triangle O A B$. Slope of $O A=\frac{1}{2}$ and slope of $A B=-\frac{3}{2}$.

(a) Find the coordinates of A.
(b) Hence find the area of $\triangle O A B$.

In the figure, the inclination of the straight line $D E$ is 45°.

(a) Express m in terms of n.
(b) If the area of $\triangle D E O$ is 18 sq . units, find the values of m and n.

Given four points $A(-6,-5), B(4, b), D(5,5)$ and $E(3,7)$. The straight line $A E$ cuts the y-axis at C and $C D / / A B$.

(a) Find the coordinates of C.
(b) Find the value of b.
(c) Prove that $B C / / D E$.

In the figure, A and B are two points on the x-axis and y-axis respectively. $P(6,3)$ is a point on $A B$ such that $O P \perp A B$.

(a) Find the coordinates of A and B.
(b) Hence find the area of $\triangle O A B$.

The figure shows a hexagon $A B C D E F$. Write down the coordinates of all the vertices of the hexagon.

Find the distance between
(a) $A(-4,3)$ and $B(5,3)$,
(b) $P(-1,-1)$ and $Q(-1,-7)$.

In the figure, $A(2,4)$ and $C(6,1)$ are two vertices of rectangle $A B C D$. $A B$ is parallel to the y-axis and $B C$ is parallel to the x-axis.

(a) Write down the coordinates of B and D.
(b) Find the distance $A B$ and $B C$.

In the figure, $A(-2,3), O(0,0)$ and $B(4,0)$ are three vertices of parallelogram $A O B C$.

(a) Find the coordinates of C.
(b) Find the area of parallelogram $A O B C$.

Find the areas of the following figures.
(a)

(b)

In the figure, $A B$ is parallel to the y-axis and $A C$ is parallel to the x-axis.

(a) Write down the coordinates of A.
(b) Find $A B$ and $A C$.
(c) Find the length of $B C$ by using the Pythagoras' theorem.

In the figure, $A(a-7, a-1), B(6,4)$ and $C(6,2-3 c)$ are the vertices of $\triangle A B C . A B$ is parallel to the x-axis.

(a) Find the value of a and the length of line segment $A B$.
(b) If $B C=6$ units, find the value of c.
(c) Find the length of $A C$ by using the Pythagoras' theorem.

Determine whether each of the following triangles is a right-angled triangle. If it is, state the right angle.
(a)

(b)

In the following figures, find the values of $\tan \theta$. Give your answers in fractions.
(a)

(b)

(c)

In the following figures, find θ. Give your answers correct to the nearest 0.1° if necessary.
(a)

(b)

(c)

In each of the following, find the distance between the two given points. (Leave your answers in surd form if necessary.)
(a) $P(1,6)$ and $Q(6,18)$
(b) $R(-3,4)$ and $S(3,-4)$
(c) $T(0,0)$ and $U(2,-1)$

In each of the following, find the distance between the two given points.
(a) $A(1,1)$ and $B(9,7)$
(b) $C\left(-\frac{9}{2}, \frac{3}{2}\right)$ and $D\left(\frac{3}{2}, 4\right)$

Find the distance between $A\left(\sqrt{5}, \frac{\sqrt{5}}{2}\right)$ and $B\left(\frac{\sqrt{45}}{2}, \frac{\sqrt{45}}{2}\right)$.

In each of the following, find the length of $P Q$.
(Leave your answers in surd form if necessary.)
(a)

(b)

In each of the following, find the length of $P Q$.
(Leave your answers in surd form if necessary.)
(a)

(b)

Determine whether the point $C(9,5)$ is equidistant from $A(1,7)$ and $B(5,-2)$.

Consider three points $P(-7,6), Q(2.5,-0.5)$ and $R\left(\frac{1}{2}, \frac{3}{5}\right)$. Which line segment is the longest, $P Q, Q R$ or $P R$?

It is given that $A(6.1,2.5), B(0.9,2), C(-1,-8.2)$ and $D(-0.1,9.3)$ are the vertices of a quadrilateral. Find the perimeter of quadrilateral $A B C D$. Give your answer correct to 3 significant figures.

It is given that $A(4,7), B(10,4), C(9,-5)$ and $D(-1,4)$ are the vertices of a quadrilateral. Find the difference in lengths of the diagonals.

The figure shows a concave polygon $A B C D E F G$. Determine which line segment(s) satisfy each of the following conditions.

(a) The slope is positive.
(b) The slope is negative.
(c) The slope is zero.
(d) The slope is undefined.

In each of the following, find the slope of the straight line passing through the two given points.
(a) $A(0,3)$ and $B(9,-9)$
(b) $P\left(-\frac{\sqrt{5}}{3}, 1\right)$ and $Q\left(\frac{\sqrt{125}}{3},-5\right)$
(Leaver your answers in surd form if necessary.)

In the figure, $A(-1,10), B(-6,-5), C(9,-1)$ and $D(10,10)$ are the vertices of a quadrilateral. Find the slopes of $A B, B C, C D$ and $A D$.

Given three points, $A(0,-5), B(-1,-3)$ and $C(-2,1)$ on the same rectangular coordinate plane, determine which line, $A B$ or $A C$ is steeper.

Find the inclination θ of the straight line L with slope $\frac{4}{5}$. Give your answer correct to 3 significant figures.

The inclination of the straight line L is 70°. Find the slope of L correct to 3 significant figures.

Find the inclination of a straight line passing through $A(-6,4)$ and $B(4,8)$. Give your answer correct to 3 significant figures.

Given that the slope of a straight line passing through $A(2,9)$ and $B(-8, b)$ is 3 , find the value of b.

In each of the following, determine whether the given three points are collinear.
(a) $A(-4.5,4), B(-1.6,-0.2)$ and $C(1,-4)$
(b) $D\left(-12,-\frac{133}{2}\right), E\left(\frac{5}{2}, 6\right)$ and $F\left(1,-\frac{3}{2}\right)$

In each of the following, A, B and C are collinear. Find the values of the unknowns.
(a)

(b)

The points $A(4,11), B(-4,6)$ and $C(c,-4)$ are collinear. Find the value of c.

Given three points $A(-3,0), B(0,3 \sqrt{3})$ and $C(-3 \sqrt{3}, 0)$ on the rectangular coordinate plane, D is a point on the y-axis above the x-axis such that $C D=A B . C D$ cuts $A B$ at E.
(a) Find $\angle B A O$.
(b) Find the coordinates of D.
(c) Hence, find $\angle C D B$.

The following table shows the slopes of 7 straight lines.

Straight line	L_{1}	L_{2}	L_{3}	L_{4}	L_{5}	L_{6}	L_{7}
Slope	$\frac{3}{2}$	3	$-\frac{3}{2}$	3	$-\frac{2}{3}$	$\frac{2}{3}$	-3

(a) Write down all pairs of parallel lines.
(b) Write down all pairs of perpendicular lines.

In each of the following, determine whether the straight lines $A B$ and $C D$ are parallel.
(a)

(b)

In each of the following, determine whether the straight lines $P Q$ and $R S$ are perpendicular.
(a)

(b)

For each of the following, find the slopes of $A B$ and $C D$. Hence, determine whether $A B$ and $C D$ are parallel, perpendicular or neither of them.
(a) $A(-6,3), B(0,6), C(5,2)$ and $D(1,0)$
(b) $A(2,2), B(-7,3), C(-8,-7)$ and $D\left(\frac{1}{9}, 66\right)$
(c) $A(6,11), B(2,-3), C(-3,-6)$ and $D(11,-2)$
L is a straight line passing through $A(3,0)$ and $B\left(\frac{1}{8}, 2\right)$.
(a) If a straight line L_{1} is parallel to L, find the slope of L_{1}.
(b) If a straight line L_{2} is perpendicular to L, find the slope of L_{2}.

In the figure, $A B / / P Q$, find the value of m.

In the figure, L is a straight line passing through $A(-7,-1)$. Another straight line L_{1} intersects L at $B(7,6)$ and cuts the x-axis at C. If $L_{1} \perp L$, find the coordinates of C.

Given that a straight line passes through $P(r,-4)$ and $Q(6,-2)$ and is perpendicular to another straight line L of slope -2 , find the value of r.

L_{1} is a straight line passing through $A(7,-7)$ and $B(-1,6) . L_{2}$ is another straight line passing through $C(0, c)$ and $D(-4,0)$.
(a) If $L_{2} / / L_{1}$, find the value of c.
(b) If $L_{2} \perp L_{1}$, find the value of c.

Determine whether each of the following triangles is right-angled triangle.
(a)

(b)

It is given that a is positive, find the distance between the $A(-a, 2 a)$ and $B(-3 a, 7 a)$ in terms of a. (Leave your answer in surd form if necessary.)

The distance between $A(-8, a)$ and $B(-4,3 a)$ is $2 \sqrt{13}$ units. If a is a positive number, find the value of a.
(a) Express the distance between $A(2 a, 2 a)$ and $B(6 a,-a)$ in terms of a where $a>0$.
(b) If the distance between A and B is 3 times the distance between $C(0,7)$ and $D(-3,3)$, find the value of a.

It is given that the distance between $A(-1,-2)$ and $B(5, b)$ is 10 units. Find all the possible values of b.

The centre of a circle on the rectangular coordinate plane is $A(0,4)$. The radius of the circle is 5 units. If $P(k$, 1) is a point on the circle and $k>0$, find the value of k.

Show that $\triangle A B C$ in the figure is a right-angled isosceles triangle.

In the figures, $A(-3,1), B(1,-3), C(5,1)$ and $D(1,5)$ are the vertices of a quadrilateral. Given that $\angle A=$ $B=\angle C=\angle D=90^{\circ}$, prove that $A B C D$ is a square.

In the figure, $A(-2,7), B(-4,3), C(-3,0)$ and $D(0,6)$ are the vertices of a trapezium $A B C D$. .If $A B / / D C$ and $A D \perp C D$, find
(a) $A B, C D$ and $A D$,
(b) the area of the trapezium.
(Leaver your answers in surd form if necessary.)

The figure shows a circle on the rectangular coordinate plane. It is centered at $B(1,3)$ and cuts the x-axis at $A(5,0)$.

(a) Find the radius of the circle.
(b) Determine whether $C(4,6)$ lies inside or outside the circle on the rectangular coordinate plane.

It is given that the coordinates of A and B are $(0,5)$ and $(6,5)$ respectively. $C(x, y)$ is a point above $A B$ such that $\triangle A B C$ is an equilateral triangle. Find the coordinates of C.
(Leave your answer in surd form if necessary.)
(a) Find the slope of a straight line passing through $A(u,-2 u)$ and $B(2,1+4 u)$. Express your answer in terms of u.
(b) What is the value of u if
(i) slope of $A B$ is $-\frac{1}{2}$?
(ii) $A B$ is vertical?
(iii) $A B$ is horizontal?

The figure shows a quadrilateral $A B C D . B C$ is parallel to the x-axis while $A D$ is perpendicular to the x-axis.

(a) For each of the following line segments, determine whether its slope is positive, negative, zero or undefined.
(i) $B A$
(ii) $B C$
(iii) $C D$
(iv) $A D$
(b) If the slopes of $A C$ and $C D$ are 1 and $-\frac{1}{2}$ respectively, find the coordinates of C and D.
L is a straight line passing through $P(6,2)$ and $Q(-18,9)$.
(a) Find the length of $P Q$ and the slope of L.
(b) If the value of the y-coordinate of Q is increased by 10%, find the percentage change in the length of $P Q$ and the slope of L. Give your answers correct to 3 significant figures.
L is a straight line passing through $P(1,-3)$ and $Q(8,4)$.
(a) Find the slope and the inclination of L.
(b) If the value of the slope of L is doubled, find the percentage change in the inclination of L. Give your answers correct to 3 significant figures.

In the figure, $A(1,2), B(2,2+\sqrt{3}), C(3,4)$ and $D(4,2+\sqrt{3})$ are 4 points on the rectangular coordinate plane.

(a) Find the inclination of the straight line passing through $A B$.
(b) Find $\angle B A C$.
(c) Show that $A C$ is the angle bisector of $\angle B A D$.

In the figure, a straight line passing through $B(4 \sqrt{3}, 15)$ cuts the y-axis at A. If the slope of the line is $\frac{1}{\sqrt{3}}$, find the coordinates of A.

In the figure, a straight line L cuts the y-axis and x-axis at $A(0,4)$ and B respectively. If the slope of L is $-\frac{5}{6}$, find the coordinates of B.

It is given that the coordinates of A and C are $(-8,-12)$ and $(6,18)$ respectively. B is a point on the x-axis such that the slope of $A B$ is twice that of $B C$. Find the coordinates of B.
L is a straight line passing through $A(-2,3)$ and $B(5,-4)$. If L cuts the x-axis and y-axis at P and Q respectively, find the coordinates of P and Q.

In the figure, L is a straight line passing through $A(2, y)$. L_{1} is another straight line passing through $B(6,-2)$. L and L_{1} intersects at $C(0,2)$. If $L \perp L_{1}$, find
(a) the slope of L in terms of y,
(b) the slope of L_{1},
(c) the value of y.
$A(8,2), B(6,6)$ and $C(0,3)$ are the vertices of $\triangle A B C$ on the rectangular coordinate plane.
(a) Prove that $\triangle A B C$ is a right-angled triangle.
(b) Find the area of $\triangle A B C$.

In the figure, $A(-6,4), B(-4,-4), C(5,-1)$ and $D(k, 2 k+1)$ are the vertices of a quadrilateral $A B C D$.
(a) If $A B / / C D$, find the coordinates of D.
(b) Show that $A D / / B C$.

In the figure, $A(-2,5), B(-13,-2), C(5,-6)$ and $D(3 n-2, n)$ are the vertices of trapezium $A B C D$.
(a) If $A D / / B C$, find the coordinates of D.
(b) Show that $D C \perp B C$.
(c) Find the area of trapezium $A B C D$.

In the figure, $A(-1,6), B(-5,-1), C\left(\frac{11}{7},-\frac{30}{7}\right)$ and $D(x, 2)$ are the vertices of quadrilateral $A B C D$.
(a) If $A D / / B C$, find the coordinates of D.
(b) Show that the angle between the two diagonals of the quadrilateral is 90°.
L_{1} is a straight line passing through $P(2,-1)$ and $Q(-1,2) . L_{2}$ is another straight line passing through $R(1,-2)$ and $S(a, b)$ such that $L_{1} / / L_{2}$.
(a) Show that $a+b=-1$.
(b) If $T(-3, c)$ lies on straight line L_{2}, find the value of c.

In the figures, L_{1} is a straight line passing through $A(6,2)$ and $B(8,1)$. It cuts the x-axis at C.

(a) Find the slope of L_{1}.
(b) Find the coordinates of C.
(c) D is a point on the x-axis so that $A D \perp L_{1}$. Find the coordinates of D.

Referring to the figure, $A B C D$ is a parallelogram. A and B are points on the y-axis and the x-axis respectively. $K(15,6)$ is a point on $B C$ such that $D K \perp B C$.

(a) Find the value of d.
(b) Find the coordinates of A and B.
(c) Find the area of parallelogram $A B C D$.
L is a straight line passing through $A(-4,-5)$ with slope m, where $m>\frac{5}{4}$. It cuts the x-axis at B.

(a) Express the distance between O and B in terms of m.
(b) If the area of $\triangle O A B$ is 5 sq . units, find the value of m.
(1) 97807453 (f) (0) mathspercyyeung

It is given that the coordinates of Q and P are (a, a) and $(x, 0)$ respectively, where $a, x \neq 0$. If P, O and Q are the vertices of an isosceles triangle, find all the possible values of x.
$A(0,5), B(1,3), C(2 x, 1)$ and $D(4 x, 0)$ are the vertices of trapezium $A B C D$ with $A D / / B C$.
(a) Find the value of x.
(b) Find the perimeter of trapezium $A B C D$. Give your answer correct to 1 decimal place.

In the figure, L is a straight line passing through $A(9,3)$ and the origin O. Another straight line L_{1} passing through $B(0,13)$ intersects L at $C(x, y)$. If $L_{1} \perp L$, find the coordinates of C.

$A(-4,0), B(1,6)$ and $C(8,0)$ are the vertices of $\triangle A B C$ on the rectangular coordinate plane. $B D$ is the height of $\triangle A B C$.
(a) Find the coordinates of D.
(b) If F is a point on $B C$ such that $D F \perp B C$, find the length of $D F$. Leave your answer in surd form.
(c) If E is a point on $A B$ such that $E D / / B C$, find the coordinates of E.

It is given that the coordinates of A and B are $(1-r, 2)$ and $(1+r, 2)$ respectively, where r is a non-zero constant. $P(x, y)$ is a point on the rectangular coordinate plane such that $A P \perp P B$.
(a) Prove that $(x-1)^{2}+(y-2)^{2}=r^{2}$.
(b) If $A P=2 B P$, find all the possible coordinates of P in terms of r.

In the figure, L_{1}, L_{2} and L_{3} are straight lines, where $L_{1} / / L_{2}$ and $L_{2} \perp L_{3}$. L_{3} cuts the y-axis and x-axis at $A(0, a)$ and $B(b, 0)$ respectively, and $O A: O B=2: 3 . C(a, 5)$ and $D(7,6)$ are points on L_{1} and L_{2} respectively.

(a) Find the coordinates of A, B and C.
(b) State a point P on $A B$ such that the area of $\triangle C P D$ is the greatest. Hence, find the greatest possible area of the $\triangle C P D$.

Find the distance between $P(5,8)$ and $Q(-3,-7)$.
A. 2 units
B. 7 units
C. 16 units
D. 17 units

Which of the following points is NOT 13 units form $P(-1,2)$?

Find the length of $A B$ in the figure.

A. 4 units
B. 5 units
C. $\sqrt{34}$ units
D. $\sqrt{44}$ units

Express the distance between $P(a, 2 a)$ and $Q(-3 a, 3 a)$ in terms of a, where a is positive.
A. $\sqrt{5} a$ units
B. $\sqrt{15} a$ units
C. $\sqrt{17} a$ units
D. $\sqrt{19} a$ units

Find the perimeter of $\triangle A B C$ in the figure.

A. 18 units
B. 17 units
C. 16 units
D. 15 units
$A(-6,4), B(15,4)$ and $C(0,12)$ are the vertices of $\triangle A B C$. Find the perimeter of $\triangle A B C$.
A. 21 units
B. 24 units
C. 36 units
D. 48 units

In the figure, $A(1,1), B(b, 5)$ and $C(-1,3)$ are the vertices of an isosceles triangle $A B C$ with $A B=C B$. Find the area of the triangle.

A. 4 sq. units
B. 6 sq. units
C. 8 sq. units
D. 10 sq. units

If the distance between $P(k+1,2 k-1)$ and $Q(k, k+2)$ is k units, find the value of k.
A. $\frac{5}{3}$
B. 2
C. $\frac{7}{3}$
D. $\frac{8}{3}$

Referring to the figure, which of the following statements is/are correct?

I. The slope of line segment $B A$ is positive as it slopes upwards from left to right.
II. The slope of line segment $C A$ is negative as it slopes downwards from right to left.
III. The slope of line segment $B D$ is undefined as it is horizontal.
A. I only
B. II only
C. I and II only
D. I, II and III

Find the slope of the straight line passing through $A(9,19)$ and $B(27,-3)$.
A. $-\frac{11}{9}$
B. $-\frac{10}{9}$
C. -1
D. $-\frac{8}{9}$
$A(1,1), B(3,2), C(3,4), D(0,4)$ and $E(0,2)$ are five points on a rectangular coordinate plane. Which of the following lines is the steepest?
A. A straight line passing through A and B
B. A straight line passing through A and C
C. A straight line passing through A and D
D. A straight line passing through A and E

The coordinates of A and B are $(a, 2)$ and $(3,5)$ respectively. If the slopes of $A B$ is twice that of $O A$, where O is the origin, find the value of a.
A. $\frac{9}{7}$
B. $\frac{10}{7}$
C. $\frac{11}{7}$
D. $\frac{12}{7}$

Which of the following points is collinear with $A(5,2)$ and $B(4,1)$?
A. $P(0,1)$
B. $Q(5,0)$
C. $R(-4,-1)$
D. $S(1,-2)$
$A(4,2), B(k, 2 k+1)$ and $C(8,-10)$ are three points on a rectangular coordinate plane. Find the value of k so that A, B and C are collinear.
A. $\frac{11}{5}$
B. $\frac{12}{5}$
C. $\frac{13}{5}$
D. $\frac{14}{5}$

A straight line L passes through $A(-2,6)$ and $B(12,-2)$. If L cuts the x-axis at C, find the coordinates of C.
A. 8.3
B. 8.4
C. 8.5
D. 8.6

A straight line passing through $A(4,0)$ and $B(3,-3)$ cuts the y-axis at C. Find the coordinates of C.
A. $(-12,0)$
B. $(-11,0)$
C. $(0,-11)$
D. $(0,-12)$

In the figure, a straight line passing through $A(3,7)$ intersects with another straight line passing through $C(4$, $5)$ at $B(-2,3)$. Find $\angle A B C$ correct to 3 significant figures.

A. 20.2°
B. 21.2°
C. 22.2°
D. 23.2°

In the figure, $m_{1}, m_{2}, m_{3}, m_{4}$ and m_{5} represent the slopes of $L_{1}, L_{2}, L_{3}, L_{4}$ and L_{5} respectively. Which of the following must be true?

I. $L_{1} / / L_{3}$
II. $L_{2} \perp L_{3}$
III. $L_{4} \perp L_{5}$
A. I only
B. II only
C. I and II only
D. I and III only
$A(14,2), B(10,8), C$ and D are four points on a rectangular coordinate plane such that $A B / / C D$. Find the slope of $C D$.
A. -1.6
B. -1.5
C. -1.4
D. -1.3

L is a straight line passing through $A(3,2)$ and $B(-13,6) . L_{1}$ is another straight line which is perpendicular to L. Find the inclination of L_{1} correct to the nearest 0.1°.
A. 75.0°
B. 76.0°
C. 77.0°
D. 78.0°

L_{1} and L_{2} are two parallel lines on the rectangular coordinate plane. L_{1} cuts the x-axis and y-axis at $(-2.5,0)$ and $(0,3)$ respectively. Let α be the obtuse angle between L_{2} and the x-axis, find α correct to 3 significant figures.
A. 128°
B. 130°
C. 132°
D. 134°

In the figure, $A B / / C D$. Find the value of a.

A. 4
B. 2
C. $\frac{1}{2}$
D. $\frac{1}{4}$

It is given that the slope of L_{1} is $\frac{1}{3}$ and $A B \perp L_{1}$, where the coordinates of A and B are $(1,0)$ and $(0, n)$ respectively. Find the value of n.
A. 3
B. -3
C. $\frac{1}{3}$
D. $-\frac{1}{3}$

It is given that the coordinates of A and B are $(-2,20)$ and $(-7,2)$ respectively. Find the slope of the reflection of $A B$ about the y-axis.
A. -3.2
B. -3.4
C. -3.6
D. -3.8

It is given that the coordinates of P is $(-3,4) . Q$ is a point on the y-axis such that $\angle O P Q=90^{\circ}$, where O is the origin. Find the coordinates of Q.
A. $\left(0, \frac{25}{4}\right)$
B. $\left(0, \frac{13}{12}\right)$
C. $\left(0, \frac{27}{4}\right)$
D. $\left(0, \frac{7}{2}\right)$
L is a straight line perpendicular to another straight line passing through $A(1,10)$ and $B(-5,-8)$. If L cuts the x-axis and y-axis at $C(c, 0)$ and $D(0,-4)$ respectively, find the area of $\triangle C O D$, where O is the origin.
A. 12 sq. units
B. 20 sq. units
C. 24 sq. units
D. 28 sq. units

