In the figure, $A B=A C$ and $D A / / B C$. Prove that $D A$ is the angle bisector of $\angle B A E$.

In the figure, $C D$ is the angle bisector of $\angle A C B . F$ is the mid-point of $D C$ and $E F \perp D C$. Prove that $D E / /$ $B C$.

In the figure, $A B=A C$ and $D A$ is the angle bisector of $\angle B A C$. Prove that $A D E$ is the perpendicular bisector of $B C$.

In the figure, $\triangle A B C$ is a triangle where $B D$ is the median of $A C$ and $\angle A E D=\angle A B C$. Prove that $C E$ is the median of $A B$.

Determine whether each of the following sets of line segments can form a triangle. Briefly explain your answer.
(a) $6 \mathrm{~cm}, 7 \mathrm{~cm}, 2 \mathrm{~cm}$
(b) $10 \mathrm{~cm}, 6 \mathrm{~cm}, 3 \mathrm{~cm}$
(c) $9 \mathrm{~cm}, 14 \mathrm{~cm}, 5 \mathrm{~cm}$

The lengths of the two sides of an isosceles triangle are 18 cm and 41 cm respectively.
(a) Find the perimeter of the triangle.
(b) Find the area of the triangle.

In the figure, $B D$ and $B G$ are the angle bisectors of $\angle A B C$ and $\angle C B H$ respectively. A line segment $D F$ is drawn parallel to $A B$, such that it meets $B C$ and $B G$ at E and F respectively. Prove that $D E=E F$.

In the figure, $\triangle A B C$ is a triangle where $C H$ is the altitude of $A B$ and $\angle A C B=90^{\circ} . B D$ is the angle bisector of $\angle A B C$, which meets $C H$ at $D . E$ is a point on $A B$, such that $B E=B C$. Prove that $E D / / A C$.

In $\triangle A B C, A B=6 \mathrm{~cm}, B C=4.2 \mathrm{~cm}$ and $A C=x \mathrm{~cm}$ where x is an integer. Find the maximum and minimum values of x.

Referring to the figure, which line segment is the perpendicular bisector of

(a) $M D$?
(b) $M N$?
(c) $B F$?
(d) $D N$?

Referring to the figure, which line segment is the angle bisector of
(a) $\angle A O C$?
(b) $\angle B O D$?
(c) $\angle C O E$?
(d) $\angle A O E$?

In the figure, $O B$ is the angle bisector of $\angle A O C$. If $\angle B O C=20^{\circ}$, find $\angle A O C$.

In the figure, $B D$ is the angle bisector of $\angle A B C$. If $\angle A B C=50^{\circ}$, find x.

In the figure, $A D$ is the perpendicular bisector of $B C$. If $B C=8 \mathrm{~cm}$ and $A D=3 \mathrm{~cm}$, find the length of $A B$.

$A B$ and $C D$ are the perpendicular bisectors of $X D$ and $X Y$ respectively. Find $X B: X Y$.

The figure shows $\triangle A B C$ with $\angle A B C=90^{\circ}$. Use straight edge and compasses to construct the angle bisector of $\angle A B C$.

The figure shows $\triangle A B C$ with $\angle A B C=90^{\circ}$. Use straight edge and compasses to construct the perpendicular bisector of $B C$.

In the figure, $A B$ intersects $C D$ at E. If $\angle C A E=\angle B D E$, prove that $\angle D B E=\angle A C E$.

In the figure, $A D$ is the angle bisector of $\angle B A C$. If $A B=A C$, prove that $\triangle A B D \cong \triangle A C D$.

In each of the following triangles, write down the name of the dotted line.
(a)

$A D$ is the

of $B C$ in $\triangle A B C$.
(b)

$B D$ is the \qquad
of $A C$ in $\triangle A B C$.
(c)

$E F$ is the \qquad
of $B C$ in $\triangle A B C$.
(d)

$B D$ is the \qquad
of $\angle A B C$ in $\triangle A B C$.

Referring to the figure, which line segment is
(a) a median of $\triangle A B C$?
(b) an angle bisector of $\triangle A B C$?

Referring to the figure, which line segment(s) is a/are
(a) perpendicular bisector(s) of $\triangle A B C$?
(b) altitude(s) of $\triangle A B C$?

In the figure, $A D$ is the median of $B C$ in $\triangle A B C$. If $A B=A C$, show that $\triangle A B D \cong \triangle A C D$.

In the figure, $A D$ is the altitude of $B C$ in $\triangle A B C$. If $A B=A C$, show that $\triangle A B D \cong \triangle A C D$.

In the figure, $A D$ is the angle bisector of $\angle B A C$ in $\triangle A B C$. If $A B=A C$, show that $\triangle A B D \cong \triangle A C D$.

In $\triangle A B C, D E$ is the perpendicular bisector of $B C$. If $D E=B D$, show that $B E$ is the altitude of $A C$ in $A B C$.

In the figure, $D E$ is the perpendicular bisector of $B C$ in $\triangle B C E$. If $\angle A B C=90^{\circ}$, prove that $B E$ is the median of $A C$ in $\triangle A B C$.

The figure shows a right-angled triangle $A B C$, where $\angle B=90^{\circ}$. If $A D=C D$ and $\angle A D B=60^{\circ}$, prove that $A D$ is the angle bisector of $\angle B A C$ in $\triangle A B C$.

In the figure, $B D$ is the median of $A C$ in $\triangle A B C$. If $A B=B C$, show that $B D$ is also the altitude of $A C$ in \triangle $A B C$.

In the figure, $A D$ is the angle bisector of $\angle B A C$ in $\triangle A B C$. If $A B=A C$, prove that $A D$ is also the perpendicular bisector of $B C$ in $\triangle A B C$.

In the figure, $D E$ is the altitude of $A C$ in $\triangle A C D$. If $A B=A E$ and $D B=D E$, prove that $A B$ is an altitude of $\triangle A B C$.

In the figure, $C D$ is the altitude of $B C$ in $\triangle B C D, \angle B A C=\angle C D B$ and $E B=E C$. Prove that $A B$ is the altitude of $B C$ in $\triangle A B C$.

In the figure, $A B=A C$ and $E B=E C$. If $C D$ is the angle bisector of $\angle A C B$ in $\triangle A B C$, prove that $B E$ is the angle bisector of $\angle D B C$ in $\triangle B C D$.

Determine whether each of the following sets of line segments can form a triangle. Briefly explain your answer.
(a) $3 \mathrm{~cm}, 5 \mathrm{~cm}, 6 \mathrm{~cm}$
(b) $2 \mathrm{~cm}, 5 \mathrm{~cm}, 8 \mathrm{~cm}$
(c) $5 \mathrm{~cm}, 12 \mathrm{~cm}, 13 \mathrm{~cm}$

If the lengths of two sides of an isosceles triangle are 4 cm and 8 cm , what is the perimeter of the triangle?

By using compasses and straight edge, locate the centroid of $\triangle A B C$.

By using compasses and straight edge, locate the incentre of $\triangle A B C$.

By using compasses and straight edge, locate the orthocentre of $\triangle A B C$.

In the figure, $A B=B C=C D=D A$. Prove that
(a) $\triangle A B D \cong \triangle C B D$ and $\triangle A B E \cong \triangle C B E$,
(b) $B D$ is the perpendicular bisector of $A C$.

In the figure, $C D$ is the angle bisector of $\angle A C B$ in $\triangle A B C . \angle D B C=\angle D C B$ and $\angle C A B=\angle D E B=$ 90°.
(a) Show that $\triangle A C D \cong \triangle E C D$.
(b) Show that $\triangle E C D \cong \triangle E B D$.
(c) Hence, find the ratio of the area of $\triangle E B D$ to the area of $\triangle A B C$.

In the figure, $A D$ is the altitude of $B C$ in $\triangle A B C, \angle B A D=\angle B C F$ and $M F=M D . A D$ intersects $C F$ at M and $B M E$ is a straight line.
(a) Show that $C F$ is the altitude of $A B$ in $\triangle A B C$.
(b) Show that $\triangle B M F \cong \triangle B M D$.

Hence, deduce that $B E$ is the angle bisector of $\angle A B C$ in $\triangle A B C$.

In the figure, $A B=B C=B E, A E / / B D$ and $C E$ intersects $B D$ at F.
(a) Prove that $A E$ is the altitude of $C E$ in $\triangle A C E$.
(b) Prove that $\triangle B F E \cong \triangle B F C$.

Hence, deduce that $D F$ is the perpendicular bisector of $C E$ in $\triangle C D E$.

The figure shows a quadrailateral $A B C D . \angle D A C=\angle D B C, A D / / B C$ and $A C$ intersects $B D$ at E.
(a) Prove that $\triangle A B E \cong \triangle D C E$.
(b) If $A E$ is the median of $B D$ in $\triangle A B D$, show that $A B C D$ is a rectangle.

The perimeter of an isosceles triangle is 28 cm . If the length of one side is 8 cm , find the possible lengths of the other two sides.

The perimeter of an isosceles triangle is 36 cm . If the length of one side is 16 cm , find the possible lengths of the other two sides.

The perimeter of an isosceles triangle is 14 cm . If the length of one side is 3 cm , find the possible lengths of the other two sides.

In $\triangle A B C, A B=5 \mathrm{~cm}, B C=a \mathrm{~cm}$ and $C A=b \mathrm{~cm}$, where a and b are positive integers. If $a+b=7$ and $a>b$, find the possible values of a and b.

In $\triangle P Q R, P Q=5 \mathrm{~cm}, Q R=x \mathrm{~cm}$ and $R P=y \mathrm{~cm}$, where x and y are positive integers. If $x+y=15$ and $x>y$, find the possible values of x and y.

In the figure, $\angle A B C=70^{\circ}$ and $\angle A C B=80^{\circ}$. If O is the incentre of $\triangle A B C$, find $\angle B O C$.

In $\triangle A B C$, the angle bisectors of $\angle A B C$ and $\angle A C B$ intersects at M and $\angle B M C=2 \angle B A C$.
(a) Show that $\angle A B M+\angle A C M=\angle B A C$.
(b) Find $\angle B A C$.

By using compasses and straight edge, construct a right-angled triangle $A B C$, where $\angle B=90^{\circ}, B C$ $=4 \mathrm{~cm}$ and $A B=3 \mathrm{~cm}$, and locate the centroid G of the triangle. Describe briefly the steps of construction.

In the figure, $A D$ is the angle bisector of $\angle B A C$ in $\triangle A B C$. $M D$ is the altitude of $A B$ in $\triangle A B D$ and $N D$ is the altitude of $A C$ in $\triangle A C D$.
(a) Show that $\triangle A M D \cong \triangle A N D$.
(b) Show that $\frac{\text { area of } \triangle A B D}{\text { area of } \triangle A C D}=\frac{B D}{D C}$. Hence, show that $\frac{B D}{D C}=\frac{A B}{A C}$.
(c) $B E$ and $C F$ are the other two angle bisectors of $\triangle A B C$ as shown below.

By using the result of (b), express $\frac{A F}{F B}$ and $\frac{C E}{E A}$ in terms of $A B, A C$ and $B C$.
(d) Find the value of $\frac{A F}{F B} \times \frac{B D}{D C} \times \frac{C E}{E A}$.

In the figure, $A D$ is the altitude of $B C$ in $\triangle A B C$.
(a) (i) Show that $\frac{D C}{A D}=\frac{1}{\tan \angle B C A}$.
(ii) Hence, show that $\frac{B D}{D C}=\frac{\tan \angle B C A}{\tan \angle A B C}$.
(b) $B E$ and CF are the other two altitudes of $\triangle A B C$ as shown below.

By using the result of (a), express $\frac{A F}{F B}$ and $\frac{C E}{E A}$ in terms of $\tan \angle A B C, \tan \angle B C A$ and $\tan \angle C A B$.
(c) Find the value of $\frac{A F}{F B} \times \frac{B D}{D C} \times \frac{C E}{E A}$.

In the figure, $A B=6 \mathrm{~cm}, B C=8 \mathrm{~cm}$ and $\angle A B C=90^{\circ}$. Find the radius of the circumscribed circle of $\triangle A B C$.

In the figure, $A D$ is the median of $B E$ in $\triangle A B E, A E$ is the median of $B C$ in $\triangle A B C$ and $D E$ is the median of $A F$ in $\triangle A F E$. If $2 A B=B C$, show that
(a) $\triangle A B E$ is an isosceles triangle,
(b) $\triangle D A B \cong \triangle D F E$,
(c) $\angle A E C=\angle A E F$,
(d) $A E$ is the angle bisector of $\angle C A D$ in $\triangle A D C$.

In the figure, $\triangle A B C$ is an equilateral triangle. $A D$ is the altitude of $B C, B E$ is the angle bisector of $\angle A B C$ and $C F$ is the median of $A B$. If $A D, B E$ and $C F$ intersect at M, which of the following statement(s) is/are true?
I. M is the centroid.
II. M is the incentre.
III. M is the circumcentre.
IV. M is the orthocentre.
A. I and II only
C. I, II, III and IV
B. I, II and III only
D. none of the above

Which of the following sets of line segments can form a triangle?
I. $2 \mathrm{~cm}, 3 \mathrm{~cm}, 4 \mathrm{~cm}$
II. $4 \mathrm{~cm}, 6 \mathrm{~cm}, 8 \mathrm{~cm}$
III. $3 \mathrm{~cm}, 12 \mathrm{~cm}, 16 \mathrm{~cm}$
A. I. only
C. I and II only
B. II. only
D. I, II and III

In $\triangle A B C, A C=x, A B=x-1$ and $B C=x+3$. Which of the following must be true?
A. x is an integer.
B. $x>4$
C. $0<x<4$
D. none of the above

The lengths of the three line segments of a triangle are $4 \mathrm{~cm}, x \mathrm{~cm}$ and $y \mathrm{~cm}$. Which of the following must be false?
A. If $x>y>4$, then $4+y>x$.
B. If $y>4>x$, then $4>y-x$.
C. If $4>x>y$, then $4-x<y$.
D. If $4>x$ and $x=y$, then $y<2$.

The perimeter of an isosceles triangle is 24 cm . If the length of one side is 6 cm , which of the following can be the lengths of the other two sides?
I. 6 cm
II. 9 cm
III. 12 cm
A. I only
C. I and II only
B. II only
D. I, II and III

If the lengths of two sides of an isosceles triangle are 6 cm and 14 cm , what is the perimeter of the triangle?
A. 20 cm
B. 26 cm
C. 30 cm
D. 34 cm

In the figure, $\triangle A B C$ is an equilateral triangle, $\angle A E C=90^{\circ}, \angle A B F=\angle C B F$ and $A D=B D$. Which of the following line segment(s) is/are median(s) of $\triangle A B C$?
I. $A E$
II. $B F$
III. $C D$
A. I only
C. III only
B. II only
D. I, II and III

In the figure, $\triangle A B C$ is a right-angled triangle with $\angle B=90^{\circ}$. If $A B=B C=4 \mathrm{~cm}$ and $B D$ is the median of $A C$, find the length of $B D$?
A. 3 cm
B. 4 cm
C. $2 \sqrt{2} \mathrm{~cm}$
D. $4 \sqrt{2} \mathrm{~cm}$

In the figure, $\triangle A B C$ is a right-angled triangle with $\angle A=90^{\circ}$. If $A B=A C$ and $A D$ is the altitude of $B C$, which of the following is/are true?
I. $\triangle A B D \cong \triangle A C D$
II. $B D=C D$
III. $A D=\frac{1}{2} B C$
A. I only
C. I and III only
B. II only
D. I, II and III

In the figure, $\angle A B C=35^{\circ}, A C=B C$ and O is the incentre of $\triangle A B C$. Find $\angle A O C$.
A. 107.5°
B. 108°
C. 109.5°
D. 110°

In the figure, $A D, B E$ and $C F$ are three altitudes of $\triangle A B C$. If they intersect at M, then M is the
A. incentre of $\triangle A B C$.
C. circumcentre of $\triangle A B C$.
B. orthocentre of $\triangle A B C$.
D. centroid of $\triangle A B C$.

In the figure, $A D$ and $B E$ are two altitudes of $\triangle A B C$. Which of the following must be true?
I. If $A D=C D, B E=C E$.
II. $\triangle A D C \sim \triangle B E C$
III. O is called the incentre of $\triangle A B C$.
A. II only
B. I and II only
C. II and III only
D. I, II and III

In the figure, $D E, F G$ and $H I$ are three perpendicular bisectors of $\triangle A B C$. If they intersect at M, then M is the
A. incentre of $\triangle A B C$.
B. centroid of $\triangle A B C$.
C. circumcentre of $\triangle A B C$.
D. orthocentre of $\triangle A B C$.

In the figure, $O G D, O E I$ and $O H F$ are the three perpendicular bisectors of $\triangle A B C$. Which of the following must be true?
I. O is the orthocentre of $\triangle A B C$.
II. $\triangle O F I \sim \triangle C F H$
III. $B E=C E$
A. I only
C. I and III only
B. III only
D. II and III only

In the figure, $B C=B D$ and $B D$ is the angle bisector of $\angle A B C$ in $\triangle A B C$. If $A B=A C$, find x.
A. 32°
B. 36°
C. 40°
D. 44°

