Set 1 Q

Consider the rectangular coordinate plane below.

(a) Write down the points which lie in the
(i) 2nd quadrant,
(ii) 3rd quadrant.
(b) Write down the x-coordinates of Q and U.
(c) Write down the y-coordinates of T and Y.
(d) Write down the coordinates of W, P, S and V.
(a) Plot four points $A(2,3), B(-4,0), C(-4,-3)$ and $D(3,4)$ on a rectangular coordinate plane.
(b) Join A and B. Write down the coordinates of the point of intersection of $A B$ and the y-axis.
(c) Join C and D. Write down the coordinates of the point of intersection of $C D$ and the x-axis.

Find the distance between $A(-3,-2)$ and $B(-8,-2)$.

Find the distance between $P(2,-5)$ and $Q(2,4)$.

The figure shows five points $A(-5,-1), B(-5,6), C, D$ and $E(-10,-4)$. C and D are points on the y-axis such that $B C$ and $D E$ are two horizontal lines. If a man walks from A via B, C and D to E, find the total distance he travels.

The figure shows three points $A(-4,2 a+1), B(-4,-6)$ and $C(3-c,-6)$. Given that $A B=9$ units and $B C=8$ units, find a and c.

In the figure, $A, B(-4,4)$ and $C(-4,-6)$ are the vertices of $\triangle A B C$, where A lies on the y-axis. Find the area of $\triangle A B C$.

Find the area of parallelogram $P Q R S$ in the figure.

Find the area of trapezium $P Q R S$ in the figure.

Find the area of pentagon $A B C D E$ in the figure.

Find the area of $\triangle P Q R$ in the figure.

The figure shows a point $P(4,-3)$. Then P is translated upwards by 8 units to P_{1}.
(a) Find the coordinates of P_{1}.
(b) If P_{1} is translated to the left by 7 units and then translated downwards by 3 units to P_{2}, find the coordinates of P_{2}.

P, Q and R are translated to the right by 4 units and then translated downwards by 6 units to $P_{1}(4,1)$, $Q_{1}(1,-3)$ and $R_{1}(6,-2)$. Find the coordinates of the vertices of
$\triangle P Q R$ and hence draw $\triangle P Q R$ in the figure.

$P(-5,2)$ is a point on a rectangular coordinate plane. If P is reflected about the y-axis to Q and Q is reflected about the x-axis to R, write down the coordinates of Q and R.

If $P(4,-6)$ is rotated through 90° anti-clockwise about O to Q, find the coordinates of Q.

Consider a point $P(-2,-5)$ on a rectangular coordinate plane.
(a) If P is rotated through 180° anti-clockwise about O to Q, find the coordinates of Q.
(b) If a point R is rotated through 270° anti-clockwise about O to P, find the coordinates of R.
(a) Write down the polar coordinates of A and B on the polar coordinate plane.
(b) Plot $P\left(3,150^{\circ}\right)$ and $Q\left(2,270^{\circ}\right)$ on the polar coordinate plane.
(c) Find $\angle P O B$ and $A Q$.

(a) Plot four points $A(-4,1), B(-1,-2), C(6,1)$ and $D(3,4)$ on a rectangular coordinate plane.
(b) Join $A B, B C, C D$ and $D A$.
(c) Find the coordinates of the point of intersection of the diagonals of $A B C D$.
(d) Which type of quadrilateral is $A B C D$?

In the figure, $A B C D$ is a rectangle with $A D=3 A B$.
(a) Find the length of $A B$.
(b) Hence, find the length of $A D$.
(c) Find the coordinates of C and D.

Find the area of pentagon $P Q R S T$ in the figure.

A point $P(a, b)$ is translated to the left by 5 units, and then reflected about the x-axis, and then rotated through 90° clockwise about O to $Q(-2,8)$. Find the values of a and b.

Gh 10. Thtroduction to Goordinates

Set 2 Q

Find the directed numbers represented by the letters on the number line below.

Rotate equilateral triangle $A B C$ through 180° anti-clockwise about A.

Draw a vertical number line from -4 to 4 and label $-\frac{1}{2},+1.5,0,3,-2.5$ on it.

Find the area of $\triangle A B C$.

Find the area of parallelogram $P Q R S$.

Find the area of trapezium $M N O P$.

Find the area of the figure.

Find the area of the figure.

Translate the figure to the right by 3 units.

Translate the figure upwards by 2 units.

Reflect the figure about $X Y$.

Reflect the figure about $P Q$.

Rotate the following figure through 90° anti-clockwise about P.

Set 3 Q

In the figure, write down the coordinates of points A to F.

Which quadrants do the following points lie in?
(a) $P(6,7)$
(b) $Q(-2,-2)$
(c) $R(2.5,-3.5)$
(d) $S\left(-\frac{3}{8}, 1 \frac{7}{10}\right)$

Plot four points $A(-3,4), B(0,2), C(2,0)$ and $D(5,-1)$ on a rectangular coordinate plane. Write down the x-coordinates of these points.

Plot four points $E(1,1), F(-3,0), G(0,-3)$ and $H(-2,-2)$ on a rectangular coordinate plane. Write down the y-coordinates of these points.

If $M(a, b)$ and $N(c, d)$ lie on the x-axis and the y-axis respectively, find b and c.
(a) Plot the following points on a rectangular coordinate plane: $A(-2,-2), B(-2,2), C(1,0), D(4,2)$ and $E(4,-2)$
(b) Join $A B, B C, C D$ and $D E$. Which letter is formed?
(a) Plot $P(-1,1), Q(3,-4)$ and $R(3,1)$ on a rectangular coordinate plane.
(b) What kind of triangle is $\triangle P Q R$?
(a) Plot the following points on a rectangular coordinate plane: $A(-1,-6), B(5,-6), C(5,-5), D(0,-5)$, $E(0,-2), F(5,-2), G(5,-1)$ and $H(-1,-1)$
(b) What kind of polygon is $A B C D E F G H$?
(a) Plot $A(-2,-4)$ and $B(3,1)$ on a rectangular coordinate plane.
(b) Draw a line L passing through A and B. If L intersects the x-axis at P and the y-axis at Q, find the coordinates of P and Q.

The figure shows points A to E on a rectangular coordinate plane.

(a) Join $A B, A D, B C, B E$ and $D E$.
(b) Which line in (a) is parallel to the x-axis?
(c) Which line(s) in (a) is/are parallel to the y-axis?

Find the lengths of line segments $A B, B C, C D$ and $D E$ in the figure.

Find the distance between $A(2,7)$ and $B(2,0)$.

Find the distance between $C(6,-3)$ and $D(-4,-3)$.

Find the distance between $E(-1.2,4.5)$ and $F(-1.2,-3.4)$.

Find the distance between $G\left(5 \frac{1}{2},-\frac{2}{3}\right)$ and $H\left(5 \frac{1}{2},-3 \frac{1}{6}\right)$.

Given three points $A(1,1), B(3,1)$ and $C(3,-1)$, find $A B$ and $B C$.

In the figure, $A(-2,3)$ is on the left of $B(3 a+1,3)$. If $A B=9$ units, find a.

In the figure, $C(4,7)$ is above $D(4,-2 d+3)$. If $C D=14$ units, find d.

In the figure, $A(2-h,-4)$ is on the left of $B(4 h+5,-4)$. If $A B=7 \frac{1}{4}$ units, find h.

In the figure, $C(-3, h-3)$ is above $D(-3,-2 h+1)$. If $C D=8$ units, find h.

There are four points $A(6,-5), B(6,2), C(-1,2)$ and $D(-1,-5)$ in the figure. Find the perimeter of quadrilateral $A B C D$.

There are four points $P(-5.5,-3), Q(-1.5,-3), R(-1.5,6.5)$ and $S(-5.5,6.5)$ in the figure. Find the perimeter of quadrilateral $P Q R S$.

There are three points $A(a,-3), B(4,-3)$ and $C(4, c)$ in the figure. If $A B=9$ units and $B C=8$ units, find a and c.

There are three points $A(3, a), B(3,3)$ and $C(c, 3)$ in the figure. If $A B=7$ units and $B C=6$ units, find a and c.

In the figure, $A B$ is parallel to the x-axis and $B C$ is parallel to the y-axis.

(a) Find the coordinates of B.
(b) Find $A B$ and $B C$.

Find the area of rectangle $P Q R S$ in the figure.

Find the area of parallelogram $O P Q R$ in the figure.

Find the area of parallelogram $A B C D$ in the figure.

Find the area of $\triangle D E F$ in the figure.

Find the area of $\triangle A B C$ in the figure.

Find the area of $\triangle P Q R$ in the figure.

Find the area of trapezium $A B C D$ in the figure.

Find the area of quadrilateral $P Q R S$ in the figure.

In the figure, $A(-5,3)$ and $C(4,-2)$ are two vertices of rectangle $A B C D$. Given that $A D$ is parallel to the x-axis, find

(a) the coordinates of B and D,
(b) the area of rectangle $A B C D$.
(a) Draw a trapezium $A B C D$ with vertices $A(4,2), B(0,2), C(-2,-2)$ and $D(5,-2)$ on a rectangle coordinate plane.
(b) Find the area of trapezium $A B C D$.

Plot the point $A(-4,-5)$ on a rectangular coordinate plane. Then plot A_{1}, A_{2} and A_{3} according to the instructions below and write down their coordinates.
(a) A is translated to the right by 6 units to A_{1}.
(b) A is translated upwards by 10 units to A_{2}.
(c) A is translated to the right by 4 units and then translated upwards by 7 units to A_{3}.

The figure shows $\triangle A B C$. If $\triangle A B C$ is translated upwards by 4 units to $\triangle A_{1} B_{1} C_{1}$,

(a) draw $\triangle A_{1} B_{1} C_{1}$ in the figure,
(b) write down the coordinates of the vertices of $\triangle A_{1} B_{1} C_{1}$.
(a) Plot $A(-2,3), B(-4,-1)$ and $C(2,-1)$ on a rectangular coordinate plane.
(b) If A, B and C are translated downwards by 2 units to A_{1}, B_{1} and C_{1} respectively, plot A_{1}, B_{1} and C_{1} in the figure and write down their coordinates.
(c) If A, B and C are translated to the left by 3 units to A_{2}, B_{2} and C_{2} respectively, plot A_{2}, B_{2} and C_{2} in the figure and write down their coordinates.
(a) Plot $X(2,4)$ and $Y(-4,-3)$ on a rectangular coordinate plane.
(b) If X and Y are reflected about the x-axis to X_{1} and Y_{1} respectively, plot X_{1} and Y_{1} in the figure and write down their coordinates.
(c) If X and Y are reflected about the y-axis to X_{2} and Y_{2} respectively, plot X_{2} and Y_{2} in the figure and write down their coordinates.

The figure shows a trapezium $A B C D$.

(a) If trapezium $A B C D$ is reflected about the x-axis to trapezium $A_{1} B_{1} C_{1} D_{1}$, draw trapezium $A_{1} B_{1} C_{1} D_{1}$ in the figure and write down the coordinates of the vertices of trapezium $A_{1} B_{1} C_{1} D_{1}$.
(b) If trapezium $A B C D$ is reflected about the y-axis to trapezium $A_{2} B_{2} C_{2} D_{2}$, draw trapezium $A_{2} B_{2} C_{2} D_{2}$ in the figure and write down the coordinates of the vertices of trapezium $A_{2} B_{2} C_{2} D_{2}$.

The figure shows a point $A(2,3)$ on a rectangular coordinate plane. L is a line parallel to the y-axis and it passes through $(-1,0)$.

(a) If A is reflected about L to A^{\prime}, plot A^{\prime} in the figure.
(b) Write down the coordinates of A^{\prime} obtained (a).

The figure shows $\triangle A B C . L$ is a line parallel to the x-axis and it passes through $(0,-1)$. If $\triangle A B C$ is reflected about L to $\triangle A_{1} B_{1} C_{1}$,

(a) draw $\triangle A_{1} B_{1} C_{1}$ in the figure,
(b) write down the coordinates of the vertices of $\triangle A_{1} B_{1} C_{1}$.

Plot $A(2,4)$ on a rectangular coordinate plane. Then plot A_{1}, A_{2} and A_{3} according to the instructions below, and write down their coordinates.
(a) A is rotated through 90° anti-clockwise about the origin to A_{1}.
(b) A is rotated through 180° anti-clockwise about the origin to A_{2}.
(c) A is rotated through 270° anti-clockwise about the origin to A_{3}.

The figure shows a line segment $P Q$.

(a) If $P Q$ is rotated through 90° anti-clockwise about O to $P_{1} Q_{1}$, draw the line segment $P_{1} Q_{1}$ in the figure and write down the coordinates of P_{1} and Q_{1}.
(b) If $P Q$ is rotated through 180° anti-clockwise about O to $P_{2} Q_{2}$, draw the line segment $P_{2} Q_{2}$ in the figure and write down the coordinates of P_{2} and Q_{2}.
(c) If $P Q$ is rotated through 270° anti-clockwise about O to $P_{3} Q_{3}$, draw the line segment $P_{3} Q_{3}$ in the figure and write down the coordinates of P_{3} and Q_{3}.

The figure shows $\triangle A B C$. If $\triangle A B C$ is rotated through 90° anti-clockwise about O to $\triangle A^{\prime} B^{\prime} C^{\prime}$,

(a) draw $\triangle A^{\prime} B^{\prime} C^{\prime}$ in the figure,
(b) write down the coordinates of the vertices of $\triangle A^{\prime} B^{\prime} C^{\prime}$.

Write down the polar coordinates of points A to F on the polar coordinate plane below.

(a) Plot $A\left(4,180^{\circ}\right), B\left(4,240^{\circ}\right), C\left(4,0^{\circ}\right)$ and $D\left(4,60^{\circ}\right)$ on a polar coordinate plane.
(b) Join $A B, B C, C D$ and $D A$. What kind of quadrilateral is $A B C D$?
(a) Plot $P\left(1,90^{\circ}\right), Q\left(2,210^{\circ}\right)$ and $R\left(5,210^{\circ}\right)$ on a polar coordinate plane.
(b) (i) Find $\angle P O Q$.
(ii) Find $Q R$.

Gh 10. Trtroduction to Goordinates

Set 4 Q

If a line L passes through $P(3,-5)$ and is parallel to the x-axis, find the coordinates of the point that L intersects with the y-axis.

Find the area of pentagon $A B C D E$ in the figure.

(a) Draw $\triangle P Q R$ with vertices $P(-5,0), Q(1,-2)$ and $R(0,2)$ on a rectangular coordinate plane.
(b) Find the area of $\triangle P Q R$.
(a) Draw a parallelogram $A B C D$ with vertices $A(-2,3), B(-5,-1), C(3,-1)$ and $D(6,3)$ on a rectangular coordinate plane.
(b) Find the area of parallelogram $A B C D$.
(a) Draw a pentagon $A B C D E$ with vertices $A(-4,2), B(-2,4), C(3,4), D(5,2)$ and $E(-1,-2)$ on a rectangular coordinate plane.
(b) Find the area of pentagon $A B C D E$.
$A B C D$ is a parallelogram on a rectangular coordinate plane with vertices $A(3,-2)$, $B(1,4)$ and $C(-4,4)$.
(a) Find the coordinates of D.
(b) Find the area of parallelogram $A B C D$.

The figure shows a point $Q(-5,-5) . L_{1}$ is a line parallel to the x-axis and it passes through $(0,-2) . L_{2}$ is a line parallel to the y-axis and it passes through $(-3,0)$.

(a) If Q is reflected about L_{1} to Q_{1}, plot Q_{1} in the figure and write down its coordinates.
(b) If Q is reflected about L_{2} to Q_{2}, plot Q_{2} in the figure and write down its coordinates.

The figure shows $\triangle A B C$.

(a) If $\triangle A B C$ is translated downwards by 3 units to $\triangle A_{1} B_{1} C_{1}$, draw $\triangle A_{1} B_{1} C_{1}$ in the figure and write down the coordinates of the vertices of $A_{1} B_{1} C_{1}$.
(b) If $\triangle A_{1} B_{1} C_{1}$ is reflected about the y-axis to $\triangle A_{2} B_{2} C_{2}$, draw $\triangle A_{2} B_{2} C_{2}$ in the figure and write down the coordinates of the vertices of $\triangle A_{2} B_{2} C_{2}$.

The figure shows $\triangle A B C$.

(a) If $\triangle A B C$ is reflected about L_{1} to $\triangle A_{1} B_{1} C_{1}$, draw $\triangle A_{1} B_{1} C_{1}$ in the figure and write down the coordinates of the vertices of $A_{1} B_{1} C_{1}$.
(b) If $\triangle A_{1} B_{1} C_{1}$ is reflected about L_{2} to $\triangle A_{2} B_{2} C_{2}$, draw $\triangle A_{2} B_{2} C_{2}$ in the figure and write down the coordinates of the vertices of $A_{2} B_{2} C_{2}$.

The figure shows a quadrilateral $O A B C$.

(a) If $O A B C$ is rotated through 90° anti-clockwise about O to $O_{1} A_{1} B_{1} C_{1}$, draw $O_{1} A_{1} B_{1} C_{1}$ in the figure and write down the coordinates of O_{1}, A_{1}, B_{1} and C_{1}.
(b) If $O A B C$ is rotated through 180° anti-clockwise about O to $O_{2} A_{2} B_{2} C_{2}$, draw $O_{2} A_{2} B_{2} C_{2}$ in the figure and write down the coordinates of O_{2}, A_{2}, B_{2} and C_{2}.
(c) If $O A B C$ is rotated through 270° anti-clockwise about O to $O_{3} A_{3} B_{3} C_{3}$, draw $O_{3} A_{3} B_{3} C_{3}$ in the figure and write down the coordinates of O_{3}, A_{3}, B_{3} and C_{3}.

Given that $A(0,5)$ is rotated through 90° anti-clockwise about the origin O and then translated upwards by 3 units to B. Find the area of $\triangle O A B$.

Given that $A(x+2,3)$ is the reflection of $B(-2, y-1)$ about the x-axis,
(a) find x and y,
(b) write down the coordinates of A and B.

Given that $P(3,2 y+1)$ is the reflection of $Q(-x+2,5)$ about the y-axis,
(a) find x and y,
(b) write down the coordinates of P and Q.

Given that $M(1,3 y+1)$ is rotated through 180° anti-clockwise about the origin to $N(-x+2,2)$,
(a) find x and y,
(b) write down the coordinates of M and N.

(a) Write down the polar coordinates of points A to D on the polar coordinate plane.
(b) Plot $E\left(3,225^{\circ}\right)$ and $F\left(3,315^{\circ}\right)$ in the figure.
(c) Plot G and H in the figure such that $E F G H$ forms a square. Write down the polar coordinates of G and H.

Helen and Eva are playing an archery game. Each of them shoots five arrows.

(a) If Helen hits A, B, C, D and E, describe the positions of these points by using polar coordinates.
(b) If Eva hits $F\left(1,15^{\circ}\right), G\left(3,225^{\circ}\right), H\left(2,105^{\circ}\right), I\left(2,300^{\circ}\right)$ and $J\left(3,120^{\circ}\right)$, plot these points on the polar coordinates plane.
(c) If the one whose arrows attain a smaller total distance from O will be the winner, who will be the winner, Helen or Eva?
(a) Plot $A\left(3,45^{\circ}\right), B\left(3,90^{\circ}\right), C\left(3,135^{\circ}\right)$ and $D\left(3,180^{\circ}\right)$ on a polar coordinate plane.
(b) Draw a regular octagon $A B C D E F G H$ on the polar coordinate plane in (a) and write down the polar coordinates of the other four vertices.
(a) Plot $P\left(4,60^{\circ}\right)$ and $R\left(4,240^{\circ}\right)$ on a polar coordinate plane.
(b) Draw a square $P Q R S$ on the polar coordinate plane in (a) and write down the polar coordinates of the other two vertices.

Plot $A(2 m+1, m-5)$ on a rectangular coordinate plane if
(a) A lies on the x-axis,
(b) A lies on the y-axis.
(a) Plot $Q(-5,10)$ on a rectangular coordinate plane and draw a line passing through O and Q.
(b) Determine whether the following points lie on the line drawn in (a).
(i) $(2,-1)$
(ii) $(3,-6)$

In the figure, $A(-3,6)$ and $C(5,-2)$ are two vertices of $\triangle A B C . A B$ is parallel to the y-axis and $B C$ is parallel to the x-axis.

(a) Write down the coordinates of B.
(b) Determine whether the points $P(-3,0), Q(-1,-1)$ and $R(5,1)$ lie inside, outside or on the side of \triangle $A B C$.

In the figure, $Q(-4,-3)$ and $S(3,2)$ are two vertices of rectangle $P Q R S . P Q$ is parallel to the y-axis and $Q R$ is parallel to the x-axis. $P Q$ cuts the x-axis at A and $Q R$ cuts the y-axis at B. Find the coordinates of P, R, A and B.

$A(1,3)$ and $C(6,-2)$ are two vertices of rectangle $A B C D$ as shown in the figure. $A B$ is parallel to the y-axis and $B C$ is parallel to the x-axis.

(a) Find the coordinates of B and D.
(b) Find the perimeter of $A B C D$.

In the figure, $P(-5,2)$ is a vertex of square $P Q R S$. Given that the perimeter of $P Q R S$ is 16 units, find the coordinates of Q, R and S.

There are three points $A(-4 x+1,2 y+1), B(4,2 y+1)$ and $C(4,3)$ in the figure. B lies on the right of A and the distance between them is 7 units; C lies vertically above B and the distance between them is 4 units. Find x and y.

In the figure, $A B, C D, E F, H G, I E$ and $J C$ are parallel to the x-axis. $J A, C B, E D, G F, H E$ and $I C$ are parallel to the y-axis. If the coordinates of A and G are $(-5,-3)$ and $(6,5)$ respectively, find the perimeter of the figure.

$A(2 x,-1), B(6+2 x,-1), C(2 y-1,5)$ and $D(-1,5)$ formed a square on a rectangular coordinate plane.

(a) Find $A B$.
(b) Find x and y.

Find the area of $\triangle A B C$ in the figure.

Find the area of pentagon $A B C D E$ in the figure.

Find the area of quadrilateral $K L M N$ in the figure.

Gh 10. Trtroduction to Goordinates

Set 5 Q

According to the following information, draw rectangle $A B C D$ on a rectangular coordinate plane.
(i) The coordinates of A and B are $A(-3,4)$ and $B(-3,-1)$ respectively.
(ii) $D C$ is on the right of $A B$.
(iii) The length of $B C$ is two times the length of $D C$.

The vertices of rectangle $A B C D$ are $A(a-3,4), B(-5, b+1), C\left(\frac{c}{3},-4\right)$ and $D\left(6, \frac{2 d-1}{2}\right)$. It is given that $A B$ is perpendicular to the x-axis.
(a) Find a, b, c and d.
(b) Write down the coordinates of the vertices of rectangle $A B C D$. Which quadrant does each of the vertices lie in?

There are two points $A\left(-3 \frac{1}{2},-2\right)$ and $B(5,-2)$ on a rectangular coordinate plane.
(a) If C is the reflection of B about the x-axis, find the coordinates of C.
(b) If D is the translation of A upwards by 6 units, find the coordinates of D.
(c) Plot points A, B, C and D on a rectangular coordinate plane. What kind of quadrilateral is $A B C D$?
(d) Find the area of quadrilateral $A B C D$.

The vertices of $\triangle K M N$ are $K(0,2), M(-5,-4)$ and $N(-2,-3)$. It is given that L is a line parallel to the y-axis and it passes through $(-1,0)$.
(a) Draw $\triangle K M N$ and line L on a rectangular coordinate plane.
(b) If $\triangle K_{1} M_{1} N_{1}$ is the reflection $\triangle K M N$ about L, draw $\triangle K_{1} M_{1} N_{1}$.
(c) Find the area of trapezium $K K_{1} M M_{1}$.

Complete the following table.

	Coordinates before transformation	Type of transformation	Coordinates after transformation
(a)	$A(\ldots, \ldots)$	Reflect about the y-axis	$A^{\prime}(5,-1)$
(b)	$B(\ldots, \ldots)$	Translate upwards by 5 units and then translate to the left by 7 units	$B^{\prime}\left(-4 \frac{1}{2},-8\right)$
(c)	$C(\ldots, \ldots)$	Rotate through 90° clockwise about the origin and then reflect about the x-axis	$C^{\prime}(-2,5)$

Complete the following table.

	Coordinates before transformation	Type of transformation	Coordinates after transformation
(b)	$P(\ldots, \ldots)$	$Q\left(_, \ldots\right)$	Reflect about the y-axis and then reflect about the x-axis
(c)	$R(\ldots, \ldots)$	Translate upwards by 4.5 units and then translate to the right by 6.5 units	$Q^{\prime}(-1,0)$
		Rotate through 270° anti-clockwise about the origin and then reflect about the x-axis	$R^{\prime}(0,-8)$

The figure shows $\triangle A B C$ with vertices $A(-6,8), B(-5,3)$ and $C(-2,3)$.

(a) Draw a line L in the figure such that L is parallel to the y-axis and it passes through $(1,0)$.
(b) If $\triangle A B C$ is reflected about L to $\triangle A_{1} B_{1} C_{1}$, draw $\triangle A_{1} B_{1} C_{1}$ in the figure.
(c) If $\triangle A_{1} B_{1} C_{1}$ is rotated through 180° anti-clockwise about O to $\triangle A_{2} B_{2} C_{2}$, draw $\triangle A_{2} B_{2} C_{2}$ in the figure.
(d) Do $\triangle A B C, \triangle A_{1} B_{1} C_{1}$ and $\triangle A_{2} B_{2} C_{2}$ have the same shape and size? Find the areas of $\triangle A B C, \triangle$ $A_{1} B_{1} C_{1}$ and $\triangle A_{2} B_{2} C_{2}$.

The figure shows $\triangle A B C$ on a rectangular coordinate plane.

(a) If $\triangle A B C$ is reflected about the x-axis to $\triangle A_{1} B_{1} C_{1}$, draw $\triangle A_{1} B_{1} C_{1}$ in the figure and write down the coordinates of the vertices of $\triangle A_{1} B_{1} C_{1}$.
(b) If $\triangle A B C$ is rotated through 270° anti-clockwise about A to $\triangle A B_{2} C_{2}$, draw $\triangle A B_{2} C_{2}$ in the figure and write down the coordinates of the vertices of $\triangle A B_{2} C_{2}$.

Gh 10. Tntroduction to Goordinates

Set 6 Q

Find the coordinates of T on the rectangular coordinate plane.

A. $(2,2)$
B. $(2,3)$
C. $(3,2)$
D. $(3,3)$

In the figure, K is the rotation of $J(x, y)$ through 90° anti-clockwise about O . Given that $K N$ and $J M$ are both perpendicular to the x-axis, which of the following is incorrect?

A. $O J=O K$
B. The coordinates of K is $(-y, x)$.
C. The coordinates of M is $(x, 0)$.
D. $\angle J O M=45^{\circ}$

Find the polar coordinates of A in the figure.

A. $\left(4,90^{\circ}\right)$
B. $\left(-4,90^{\circ}\right)$
C. $\left(4,180^{\circ}\right)$
D. $\left(-4,180^{\circ}\right)$

Find the polar coordinates of P, Q and R in the figure.

A. $\quad P\left(4,150^{\circ}\right), Q\left(3,0^{\circ}\right), R\left(4,240^{\circ}\right)$
B. $\quad P\left(4,240^{\circ}\right), Q\left(3,150^{\circ}\right), R\left(4,0^{\circ}\right)$
C. $P\left(4,150^{\circ}\right), Q\left(3,240^{\circ}\right), R\left(4,0^{\circ}\right)$
D. $P\left(4,0^{\circ}\right), Q\left(3,150^{\circ}\right), R\left(4,240^{\circ}\right)$

On a polar coordinate plane, which of the following two points are not collinear with the pole?
A. $\left(3,35^{\circ}\right)$ and $\left(6.5,215^{\circ}\right)$
B. $\left(1,330^{\circ}\right)$ and $\left(6,330^{\circ}\right)$
C. $\left(4,15^{\circ}\right)$ and $\left(4,105^{\circ}\right)$
D. $\left(7,124^{\circ}\right)$ and $\left(7,304^{\circ}\right)$

Which of the following points lies in quadrant II?

A. P
B. Q
C. R
D. S
$C(-2,5)$ lies in
A. quadrant I.
B. quadrant II.
C. quadrant III.
D. quadrant IV.

Given five points $A(-3,4), B(4,4), C(4,6), D(4,-2)$ and $E(-3,-2)$. Which of the following two lines are parallel to the x-axis?
A. $A B$ and $A C$
B. $A B$ and $D E$
C. $A E$ and $D E$
D. $B C$ and $B D$

The line passing through $A(-5,1)$ and $B(-5,-4)$ is
A. parallel to the x-axis.
B. parallel to the y-axis.
C. intersecting with the x-axis and the y-axis.
D. not intersecting with the x-axis and the y-axis.

Find the distance between $A(-3,-2)$ and $B(-3,-4)$.
A. 0 unit
B. 2 units
C. 6 units
D. 8 units

Find the distance between $A\left(0,-2 \frac{5}{11}\right)$ and the origin.
A. 0 unit
B. $-2 \frac{5}{11}$ units
C. $2 \frac{5}{11}$ units
D. $\frac{5}{11}$ units

Given a point $P\left(-5 \frac{2}{3},-2\right)$ and the distance between P and Q is $1 \frac{1}{3}$ units, which of the following cannot be the coordinates of Q ?
A. $\left(-6 \frac{1}{3},-2\right)$
B. $(-7,-2)$
C. $\left(-5 \frac{2}{3},-3 \frac{1}{3}\right)$
D. $\left(-5 \frac{2}{3},-\frac{2}{3}\right)$

Given two points $A(-3,1)$ and $B(-3,-4)$, which of the following is/are correct?
I. $A B=3$ units
II. $A B$ is parallel to the y-axis.
III. $A B$ intersects with the x-axis.
A. I only
B. III only
C. II and III only
D. I and III only

In an equilateral triangle $A B C$, the coordinates of the vertices of A and B are $\left(-2,-3 \frac{3}{8}\right)$ and $\left(-2,-1 \frac{1}{4}\right)$ respectively. Find the perimeter of $\triangle A B C$.
A. $2 \frac{1}{8}$ units
B. 4 units
C. $4 \frac{5}{8}$ units
D. $6 \frac{3}{8}$ units

Find the area of rectangle $A B C D$ in the figure.

A. 12 sq. units
B. 16 sq. units
C. 18 sq. units
D. 24 sq. units

Find the area of trapezium $A B C D$ in the figure.

A. 13 sq. units
B. 24 sq. units
C. 26 sq. units
D. 29 sq. units

What is the difference between the areas of $\triangle A B C$ and $\triangle A C D ?$

A. 3 sq. units
B. 6 sq. units
C. 8 sq. units
D. 12 sq. units

On a rectangular coordinate plane, the coordinates of the vertices of $\triangle P Q R$ are $P(5 a,-2), Q(4,-6)$ and $R(-6,-6)$. Find the area of $\triangle P Q R$.
A. 10 sq. units
B. 20 sq. units
C. $(40 a+48)$ sq. units
D. $(40 a-32)$ sq. units

On a rectangular coordinate plane, the coordinates of the vertices of quadrilateral $E F G H$ are $E(-1-2 b, 5)$, $F(1,-4), G(4 b,-1)$ and $H(1,6)$, where $b>0$. If the area of $E F G H$ is 65 sq. units, find b.
A. 0.5
B. 1
C. 1.5
D. 2
$A(-2,1)$ is translated to the right by 3 units and then translated upwards by 2 units to A_{1}. Find the coordinates of A_{1}.
A. $(1,3)$
B. $(1,-1)$
C. $(0,4)$
D. $(3,2)$
$R(-3,-2)$ is reflected about the x-axis to R^{\prime}. Find the coordinates of R^{\prime}.
A. $(3,2)$
B. $(3,-2)$
C. $(-3,2)$
D. $(-2,3)$
$C(5,6)$ is reflected about L to C^{\prime}. Find the coordinates of C^{\prime}.

A. $(3,6)$
B. $(-5,6)$
C. $(5,2)$
D. $(5,-6)$
$D(1,-1)$ is reflected about L to D^{\prime}. Find the coordinates of D^{\prime}.

A. $(-5,-1)$
B. $(-1,-1)$
C. $(1,-7)$
D. $(5,1)$

If $N(5,-8)$ is reflection of $M(5,-1)$ about line L, then L must
A. pass through $(5,-4.5)$.
B. pass through $(5,0)$.
C. be perpendicular to the x-axis.
D. pass through the origin.
$A(3,-9)$ is rotated through 180° anti-clockwise about the origin to A^{\prime}. Find the coordinates of A^{\prime}.
A. $(-3,-9)$
B. $(3,9)$
C. $(9,-3)$
D. $(-3,9)$
$T(-a, b)$ is rotated through 90° anti-clockwise about the origin to T. Find the coordinates of T^{\prime}.
A. (b, a)
B. $(a,-b)$
C. $(-b, a)$
D. $(-b,-a)$
$S(-2,6)$ is translated upwards by 2 units to U, then U is rotated through 90° anti-clockwise about the origin to W. Find the coordinates of W.
A. $(-2,-8)$
B. $(-6,0)$
C. $(2,-8)$
D. $(-8,-2)$
$A(-2,-3)$ is first reflected about the y-axis to P, then P is rotated through 90° anti-clockwise about the origin to Q. Find the coordinates of P and Q.
A. $P(-2,3), Q(-3,-2)$
B. $P(2,-3), Q(3,2)$
C. $P(-3,2), Q(-3,-2)$
D. $P(-3,2), Q(3,2)$

Which of the following is true about points $P(a, b)$ and $Q(-a, b)$?
A. $\quad P$ is the reflection of Q about the x-axis.
B. $\quad Q$ is the reflection of P about the y-axis.
C. P is the rotation of Q through 90° anti-clockwise about the origin.
D. Q is the rotation of P through 180° anti-clockwise about the origin.
$P(a, b)$ is rotated through 180° anti-clockwise about the origin O to $Q(c, d)$. Which of the following is/are true?
I. $\quad O P=O Q$
II. $a=-c$
III. $b=d$
A. I only
B. II only
C. III only
D. I and II only

