Ch 2 Laws of Integral Indices

(from Quick Practice 2.1)

Simplify the following expressions.

(a)
$$(p^2 \times p^7)^4$$

(b)
$$\left(\frac{y^2}{y^{10}}\right)^2$$

(c)
$$(h^7)^3 \div h^8$$

mathspercyyeung.com

(from Quick Practice 2.2)

Simplify the following expressions.

- (a) $(4x)^3$
- **(b)** $(-y^6)^5$
- (c) $(2x^3y)^4$

(from Quick Practice 2.3)

Simplify the following expressions.

(a)
$$\left(\frac{x^5}{3}\right)^3$$

(b)
$$\left(\frac{x^4}{4y^2}\right)^2$$

$$\text{(c)} \quad \left(\frac{3y}{-y^4}\right)^4$$

Simplify the following expressions.

(a)
$$\frac{a^8b^5}{(a^3b^4)^2}$$

(from Quick Practice 2.4(a))

(b)
$$\left(\frac{2x}{y^4}\right)^4 \times \frac{x^2y^7}{8}$$
 (from Quick Practice 2.4(b))

(from Quick Practice 2.5)

Given that n is a positive integer, simplify the following expressions.

(a)
$$3^{2n-1} \times 9^{2n}$$

(b)
$$\frac{9^{2n}}{27}$$

(from Quick Practice 2.6)

Find the values of the following expressions without using a calculator.

(a)
$$25^{-1} + 5^0 \times 10^{-3}$$
 (b) $8^{-3} \times 2^5$

(b)
$$8^{-3} \times 2^{5}$$

(c)
$$64^{-3} \div 4^{-6}$$

(Leave your answers in fractions if necessary.)

(from Quick Practice 2.7)

Simplify the following expressions and express your answers with positive indices.

$$(a) \quad \frac{m^2}{m^{-5} \times m^8}$$

(b)
$$\frac{(x^{-3})^{-2}}{x^{-4}y^{-2}}$$

(from Quick Practice 2.8)

Simplify the following expressions and express your answers with positive indices.

(a)
$$\frac{(3a^0b^3)^{-2}}{a^{-2}b^{-4}}$$

(a)
$$\frac{(3a^0b^3)^{-2}}{a^{-2}b^{-4}}$$
 (b) $\left(\frac{2p^{-3}q}{4p^2q^{-3}}\right)^{-2}$

(from Quick Practice 2.9)

Express the following numbers in scientific notation.

- (a) 650 000
- **(b)** 184 000 000
- (c) 0.000 000 25
- (d) -0.000 037 2

(from Quick Practice 2.10)

Express the following numbers as integers or decimals.

- (a) 4.93×10^7
- **(b)** -5.001×10^2
- (c) 6.72×10^{-3}
- **(d)** -3.69×10^{-4}

(from Quick Practice 2.11)

Express the following numbers in scientific notation, and round off your answers to 3 significant figures.

- (a) $247\ 500\ 000 \times 10^{-5}$
- **(b)** 8264.5×10^6
- (c) 0.0005298×10^{-4}
- (d) -0.0075392×10^5

(from Quick Practice 2.12)

Without using a calculator, find the values of the following expressions, and express your answers in scientific notation.

- (a) $4 \times 10^9 + 7 \times 10^8$
- **(b)** $0.000\ 000\ 069 0.000\ 000\ 004$
- (c) $\frac{8\times10^8}{2\times10^{-6}}$
- (d) 0.0004×6000000

(from Quick Practice 2.14)

(a) In the following table, write down the place value of each digit in 93 085₁₀. (Give your answers in index notation.)

Digit	9	3	0	8	5
Place value					

(b) Hence, express 93 085₁₀ in the expanded form.

(from Quick Practice 2.15)

(a) In the following table, write down the place value of each digit in 11010₂. (Give your answers in index notation.)

Digit	1	1	0	1	0
Place value					

(b) Hence, express 11010_2 in the expanded form.

(from Quick Practice 2.16)

Write the following expressions as binary numbers.

- (a) $1 \times 2^5 + 1 \times 2^4 + 1$
- **(b)** $2^6 + 2^2 + 2$
- (c) $1 \times 8 + 1 \times 4 + 1$

(from Quick Practice 2.17)

Convert the following binary numbers into denary numbers.

- **(a)** 1010₂
- **(b)** 101101₂

(from Quick Practice 2.18)

Convert the following denary numbers into binary numbers.

- **(a)** 13₁₀
- **(b)** 34₁₀

(from Quick Practice 2.19)

Express $2^5 + 2^2 + 5$ as a binary number.